def import_onnx(): """Import the onnx model into mxnet""" model_url = 'https://s3.amazonaws.com/onnx-mxnet/examples/super_resolution.onnx' download(model_url, 'super_resolution.onnx') LOGGER.info("Converting onnx format to mxnet's symbol and params...") sym, arg_params, aux_params = onnx_mxnet.import_model('super_resolution.onnx') LOGGER.info("Successfully Converted onnx format to mxnet's symbol and params...") return sym, arg_params, aux_params
def get_test_image(): """Download and process the test image""" # Load test image input_image_dim = 224 img_url = 'https://s3.amazonaws.com/onnx-mxnet/examples/super_res_input.jpg' download(img_url, 'super_res_input.jpg') img = Image.open('super_res_input.jpg').resize((input_image_dim, input_image_dim)) img_ycbcr = img.convert("YCbCr") img_y, img_cb, img_cr = img_ycbcr.split() input_image = np.array(img_y)[np.newaxis, np.newaxis, :, :] return input_image, img_cb, img_cr
def download_sick(dirpath): if os.path.exists(dirpath): print('Found SICK dataset - skip') return else: os.makedirs(dirpath) train_url = 'http://alt.qcri.org/semeval2014/task1/data/uploads/sick_train.zip' trial_url = 'http://alt.qcri.org/semeval2014/task1/data/uploads/sick_trial.zip' test_url = 'http://alt.qcri.org/semeval2014/task1/data/uploads/sick_test_annotated.zip' unzip(download(train_url, dirname=dirpath)) unzip(download(trial_url, dirname=dirpath)) unzip(download(test_url, dirname=dirpath))
def get_test_image(): """Download and process the test image""" # Load test image input_image_dim = 224 img_url = 'https://s3.amazonaws.com/onnx-mxnet/examples/super_res_input.jpg' download(img_url, 'super_res_input.jpg') img = Image.open('super_res_input.jpg').resize( (input_image_dim, input_image_dim)) img_ycbcr = img.convert("YCbCr") img_y, img_cb, img_cr = img_ycbcr.split() input_image = np.array(img_y)[np.newaxis, np.newaxis, :, :] return input_image, img_cb, img_cr
def get_Dataset(): url_format = 'https://apache-mxnet.s3-accelerate.amazonaws.com/gluon/dataset/pikachu/{}' hashes = { 'train.rec': 'e6bcb6ffba1ac04ff8a9b1115e650af56ee969c8', 'train.idx': 'dcf7318b2602c06428b9988470c731621716c393', 'val.rec': 'd6c33f799b4d058e82f2cb5bd9a976f69d72d520' } for k, v in hashes.items(): fname = k target = osp.join('data', fname) url = url_format.format(k) if not osp.exists(target) or not verified(target, v): print('Downloading', target, url) download(url, fname=fname, dirname='data', overwrite=True)
def get_test_files(name): """Extract tar file and returns model path and input, output data""" tar_name = download(URLS.get(name), dirname=CURR_PATH.__str__()) # extract tar file tar_path = os.path.join(CURR_PATH, tar_name) tar = tarfile.open(tar_path.__str__(), "r:*") tar.extractall(path=CURR_PATH.__str__()) tar.close() data_dir = os.path.join(CURR_PATH, name) model_path = os.path.join(data_dir, 'model.onnx') inputs = [] outputs = [] # get test files for test_file in os.listdir(data_dir): case_dir = os.path.join(data_dir, test_file) # skip the non-dir files if not os.path.isdir(case_dir): continue input_file = os.path.join(case_dir, 'input_0.pb') input_tensor = TensorProto() with open(input_file, 'rb') as proto_file: input_tensor.ParseFromString(proto_file.read()) inputs.append(numpy_helper.to_array(input_tensor)) output_tensor = TensorProto() output_file = os.path.join(case_dir, 'output_0.pb') with open(output_file, 'rb') as proto_file: output_tensor.ParseFromString(proto_file.read()) outputs.append(numpy_helper.to_array(output_tensor)) return model_path, inputs, outputs
def get_mnist_iterator(rank): data_dir = "data-%d" % rank if not os.path.isdir(data_dir): os.makedirs(data_dir) zip_file_path = download('http://data.mxnet.io/mxnet/data/mnist.zip', dirname=data_dir) with zipfile.ZipFile(zip_file_path) as zf: zf.extractall(data_dir) input_shape = (1, 28, 28) batch_size = args.batch_size train_iter = mx.io.MNISTIter( image="%s/train-images-idx3-ubyte" % data_dir, label="%s/train-labels-idx1-ubyte" % data_dir, input_shape=input_shape, batch_size=batch_size, shuffle=True, flat=False, num_parts=hvd.size(), part_index=hvd.rank() ) val_iter = mx.io.MNISTIter( image="%s/t10k-images-idx3-ubyte" % data_dir, label="%s/t10k-labels-idx1-ubyte" % data_dir, input_shape=input_shape, batch_size=batch_size, flat=False, num_parts=hvd.size(), part_index=hvd.rank() ) return train_iter, val_iter
def get_mnist_iterator(rank): data_dir = "data-%d" % rank if not os.path.isdir(data_dir): os.makedirs(data_dir) zip_file_path = download('http://data.mxnet.io/mxnet/data/mnist.zip', dirname=data_dir) with zipfile.ZipFile(zip_file_path) as zf: zf.extractall(data_dir) input_shape = (1, 28, 28) batch_size = args.batch_size train_iter = mx.io.MNISTIter( image="%s/train-images-idx3-ubyte" % data_dir, label="%s/train-labels-idx1-ubyte" % data_dir, input_shape=input_shape, batch_size=batch_size, shuffle=True, flat=False, num_parts=hvd.size(), part_index=hvd.rank() ) val_iter = mx.io.MNISTIter( image="%s/t10k-images-idx3-ubyte" % data_dir, label="%s/t10k-labels-idx1-ubyte" % data_dir, input_shape=input_shape, batch_size=batch_size, flat=False, ) return train_iter, val_iter
def get_dataset(prefetch=False): image_path = os.path.join(dataset_path, "BSDS300/images") if not os.path.exists(image_path): os.makedirs(dataset_path) file_name = download(dataset_url) with tarfile.open(file_name) as tar: for item in tar: tar.extract(item, dataset_path) os.remove(file_name) crop_size = 256 crop_size -= crop_size % upscale_factor input_crop_size = crop_size // upscale_factor input_transform = [ CenterCropAug((crop_size, crop_size)), ResizeAug(input_crop_size) ] target_transform = [CenterCropAug((crop_size, crop_size))] iters = (ImagePairIter(os.path.join(image_path, "train"), (input_crop_size, input_crop_size), (crop_size, crop_size), batch_size, color_flag, input_transform, target_transform), ImagePairIter(os.path.join(image_path, "test"), (input_crop_size, input_crop_size), (crop_size, crop_size), test_batch_size, color_flag, input_transform, target_transform)) return [PrefetchingIter(i) for i in iters] if prefetch else iters
def get_dataset(prefetch=False): image_path = os.path.join(dataset_path, "BSDS300/images") if not os.path.exists(image_path): os.makedirs(dataset_path) file_name = download(dataset_url) with tarfile.open(file_name) as tar: for item in tar: tar.extract(item, dataset_path) os.remove(file_name) crop_size = 256 crop_size -= crop_size % upscale_factor input_crop_size = crop_size // upscale_factor input_transform = [CenterCropAug((crop_size, crop_size)), ResizeAug(input_crop_size)] target_transform = [CenterCropAug((crop_size, crop_size))] iters = (ImagePairIter(os.path.join(image_path, "train"), (input_crop_size, input_crop_size), (crop_size, crop_size), batch_size, color_flag, input_transform, target_transform), ImagePairIter(os.path.join(image_path, "test"), (input_crop_size, input_crop_size), (crop_size, crop_size), test_batch_size, color_flag, input_transform, target_transform)) return [PrefetchingIter(i) for i in iters] if prefetch else iters
def download_wordvecs(dirpath): if os.path.exists(dirpath): print('Found Glove vectors - skip') return else: os.makedirs(dirpath) url = 'http://www-nlp.stanford.edu/data/glove.840B.300d.zip' unzip(download(url, dirname=dirpath))
def download_model(model_name, model_path): # reference: https://github.com/mlperf/inference/tree/master/v0.5/classification_and_detection if model_name == 'resnet50-v1.5': model_url = 'https://zenodo.org/record/2592612/files/resnet50_v1.onnx' data_shape = (1, 3, 224, 224) else: raise ValueError('Model: {} not implemented.'.format(model_name)) if not os.path.exists(model_path): os.mkdir(model_path) onnx_model_file = os.path.join(model_path, model_name + '.onnx') print(onnx_model_file) if not os.path.exists(onnx_model_file): print("Downloading ONNX model from: {}".format(model_url)) download(model_url, onnx_model_file) return onnx_model_file, data_shape
def test_nodims_import(): # Download test model without dims mentioned in params test_model = download(test_model_path, dirname=CURR_PATH.__str__()) input_data = np.array([0.2, 0.5]) nd_data = mx.nd.array(input_data).expand_dims(0) sym, arg_params, aux_params = onnx_mxnet.import_model(test_model) model_metadata = onnx_mxnet.get_model_metadata(test_model) input_names = [inputs[0] for inputs in model_metadata.get('input_tensor_data')] output_data = forward_pass(sym, arg_params, aux_params, input_names, nd_data) assert(output_data.shape == (1,1))
def GetMNIST_ubyte(): if not os.path.isdir("data"): os.makedirs('data') if (not os.path.exists('data/train-images-idx3-ubyte')) or \ (not os.path.exists('data/train-labels-idx1-ubyte')) or \ (not os.path.exists('data/t10k-images-idx3-ubyte')) or \ (not os.path.exists('data/t10k-labels-idx1-ubyte')): zip_file_path = download('http://data.mxnet.io/mxnet/data/mnist.zip', dirname='data') with zipfile.ZipFile(zip_file_path) as zf: zf.extractall('data')
def GetCifar10(): if not os.path.isdir("data"): os.makedirs('data') if (not os.path.exists('data/cifar/train.rec')) or \ (not os.path.exists('data/cifar/test.rec')) or \ (not os.path.exists('data/cifar/train.lst')) or \ (not os.path.exists('data/cifar/test.lst')): zip_file_path = download('http://data.mxnet.io/mxnet/data/cifar10.zip', dirname='data') with zipfile.ZipFile(zip_file_path) as zf: zf.extractall('data')
def download_parser(dirpath): parser_dir = 'stanford-parser' if os.path.exists(os.path.join(dirpath, parser_dir)): print('Found Stanford Parser - skip') return url = 'http://nlp.stanford.edu/software/stanford-parser-full-2015-01-29.zip' filepath = download(url, dirname=dirpath) zip_dir = '' with zipfile.ZipFile(filepath) as zf: zip_dir = zf.namelist()[0] zf.extractall(dirpath) os.remove(filepath) os.rename(os.path.join(dirpath, zip_dir), os.path.join(dirpath, parser_dir))
def download_training_data(): print('downloading training data...') if not os.path.isdir("data"): os.makedirs('data') if (not os.path.exists('data/train.rec')) or \ (not os.path.exists('data/test.rec')) or \ (not os.path.exists('data/train.lst')) or \ (not os.path.exists('data/test.lst')): zip_file_path = download('http://data.mxnet.io/mxnet/data/cifar10.zip') with zipfile.ZipFile(zip_file_path) as zf: zf.extractall() os.rename('cifar', 'data') print('done')
def download_training_data(fileName): print('downloading training data...') if not os.path.isdir("data"): os.makedirs('data') if (not os.path.exists('data/train.rec')) or \ (not os.path.exists('data/test.rec')) or \ (not os.path.exists('data/train.lst')) or \ (not os.path.exists('data/test.lst')): zip_file_path = download('https://sagemaker-crops-corn.s3.amazonaws.com/' + str(fileName)) #'http://data.mxnet.io/mxnet/data/cifar10.zip') with zipfile.ZipFile(zip_file_path) as zf: zf.extractall() os.rename('cifar', 'data') print('done')
def get_cifar10(dir="data"): """Downloads CIFAR10 dataset into a directory in the current directory with the name `data`, and then extracts all files into the directory `data/cifar`. """ if not os.path.isdir(dir): os.makedirs(dir) if (not os.path.exists(os.path.join(dir, 'cifar', 'train.rec'))) or \ (not os.path.exists(os.path.join(dir, 'cifar', 'test.rec'))) or \ (not os.path.exists(os.path.join(dir, 'cifar', 'train.lst'))) or \ (not os.path.exists(os.path.join(dir, 'cifar', 'test.lst'))): zip_file_path = download('http://data.mxnet.io/mxnet/data/cifar10.zip', dirname=dir) with zipfile.ZipFile(zip_file_path) as zf: zf.extractall(dir)
def download_training_data(): print("downloading training data...") if not os.path.isdir("data"): os.makedirs("data") if ( (not os.path.exists("data/train.rec")) or (not os.path.exists("data/test.rec")) or (not os.path.exists("data/train.lst")) or (not os.path.exists("data/test.lst")) ): zip_file_path = download("http://data.mxnet.io/mxnet/data/cifar10.zip") with zipfile.ZipFile(zip_file_path) as zf: zf.extractall() os.rename("cifar", "data") print("done")
def download_voc(path, overwrite=False): _DOWNLOAD_URLS = [ ('http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar', '34ed68851bce2a36e2a223fa52c661d592c66b3c'), ('http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar', '41a8d6e12baa5ab18ee7f8f8029b9e11805b4ef1'), ('http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar', '4e443f8a2eca6b1dac8a6c57641b67dd40621a49') ] makedirs(path) for url, checksum in _DOWNLOAD_URLS: # try: # filename = download(url, path=path, overwrite=overwrite, sha1_hash=checksum) # except: filename = download(url, dirname=path) # extract with tarfile.open(filename) as tar: tar.extractall(path=path)
matched = sha1.hexdigest() == sha1hash if not matched: print('Found hash mismatch in file {}, possibly due to incomplete download.'.format(file_path)) return matched url_format = 'https://apache-mxnet.s3-accelerate.amazonaws.com/gluon/dataset/pikachu/{}' hashes = {'train.rec': 'e6bcb6ffba1ac04ff8a9b1115e650af56ee969c8', 'train.idx': 'dcf7318b2602c06428b9988470c731621716c393', 'val.rec': 'd6c33f799b4d058e82f2cb5bd9a976f69d72d520'} for k, v in hashes.items(): fname = 'pikachu_' + k target = osp.join('data', fname) url = url_format.format(k) if not osp.exists(target) or not verified(target, v): print('Downloading', target, url) download(url, fname=fname, dirname='data', overwrite=True) import mxnet.image as image data_shape = 256 batch_size = 32 def get_iterators(data_shape, batch_size): class_names = ['pikachu'] num_class = len(class_names) train_iter = image.ImageDetIter( batch_size=batch_size, data_shape=(3, data_shape, data_shape), path_imgrec='./data/pikachu_train.rec', path_imgidx='./data/pikachu_train.idx', shuffle=True, mean=True,
# or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import os import zipfile import shutil from mxnet.test_utils import download zip_file_path = 'models/msgnet_21styles.zip' download('https://apache-mxnet.s3-accelerate.amazonaws.com/gluon/models/msgnet_21styles-2cb88353.zip', zip_file_path) with zipfile.ZipFile(zip_file_path) as zf: zf.extractall() os.remove(zip_file_path) shutil.move('msgnet_21styles-2cb88353.params', 'models/21styles.params')
def get_dataset(prefetch=False): """Download the BSDS500 dataset and return train and test iters.""" if path.exists(data_dir): print( "Directory {} already exists, skipping.\n" "To force download and extraction, delete the directory and re-run." "".format(data_dir), file=sys.stderr, ) else: print("Downloading dataset...", file=sys.stderr) downloaded_file = download(dataset_url, dirname=datasets_tmpdir) print("done", file=sys.stderr) print("Extracting files...", end="", file=sys.stderr) os.makedirs(data_dir) os.makedirs(tmp_dir) with zipfile.ZipFile(downloaded_file) as archive: archive.extractall(tmp_dir) shutil.rmtree(datasets_tmpdir) shutil.copytree( path.join(tmp_dir, "BSDS500-master", "BSDS500", "data", "images"), path.join(data_dir, "images"), ) shutil.copytree( path.join(tmp_dir, "BSDS500-master", "BSDS500", "data", "groundTruth"), path.join(data_dir, "groundTruth"), ) shutil.rmtree(tmp_dir) print("done", file=sys.stderr) crop_size = 256 crop_size -= crop_size % upscale_factor input_crop_size = crop_size // upscale_factor input_transform = [CenterCropAug((crop_size, crop_size)), ResizeAug(input_crop_size)] target_transform = [CenterCropAug((crop_size, crop_size))] iters = ( ImagePairIter( path.join(data_dir, "images", "train"), (input_crop_size, input_crop_size), (crop_size, crop_size), batch_size, color_flag, input_transform, target_transform, ), ImagePairIter( path.join(data_dir, "images", "test"), (input_crop_size, input_crop_size), (crop_size, crop_size), test_batch_size, color_flag, input_transform, target_transform, ), ) return [PrefetchingIter(i) for i in iters] if prefetch else iters
# on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. """Testing super_resolution model conversion""" from __future__ import absolute_import as _abs from __future__ import print_function from collections import namedtuple import mxnet as mx from mxnet.test_utils import download import numpy as np from PIL import Image import onnx_mxnet model_url = 'https://s3.amazonaws.com/onnx-mxnet/examples/super_resolution.onnx' download(model_url, 'super_resolution.onnx') print("Converting onnx format to mxnet's symbol and params...") sym, params = onnx_mxnet.import_model('super_resolution.onnx') # Load test image input_image_dim = 224 output_image_dim = 672 img_url = 'https://s3.amazonaws.com/onnx-mxnet/examples/super_res_input.jpg' download(img_url, 'super_res_input.jpg') img = Image.open('super_res_input.jpg').resize( (input_image_dim, input_image_dim)) img_ycbcr = img.convert("YCbCr") img_y, img_cb, img_cr = img_ycbcr.split() x = np.array(img_y)[np.newaxis, np.newaxis, :, :]
def get_dataset(prefetch=False): """Download the BSDS500 dataset and return train and test iters.""" if path.exists(data_dir): print( "Directory {} already exists, skipping.\n" "To force download and extraction, delete the directory and re-run." "".format(data_dir), file=sys.stderr, ) else: print("Downloading dataset...", file=sys.stderr) downloaded_file = download(dataset_url, dirname=datasets_tmpdir) print("done", file=sys.stderr) print("Extracting files...", end="", file=sys.stderr) os.makedirs(data_dir) os.makedirs(tmp_dir) with zipfile.ZipFile(downloaded_file) as archive: archive.extractall(tmp_dir) shutil.rmtree(datasets_tmpdir) shutil.copytree( path.join(tmp_dir, "BSDS500-master", "BSDS500", "data", "images"), path.join(data_dir, "images"), ) shutil.copytree( path.join(tmp_dir, "BSDS500-master", "BSDS500", "data", "groundTruth"), path.join(data_dir, "groundTruth"), ) shutil.rmtree(tmp_dir) print("done", file=sys.stderr) crop_size = 256 crop_size -= crop_size % upscale_factor input_crop_size = crop_size // upscale_factor input_transform = [ CenterCropAug((crop_size, crop_size)), ResizeAug(input_crop_size) ] target_transform = [CenterCropAug((crop_size, crop_size))] iters = ( ImagePairIter( path.join(data_dir, "images", "train"), (input_crop_size, input_crop_size), (crop_size, crop_size), batch_size, color_flag, input_transform, target_transform, ), ImagePairIter( path.join(data_dir, "images", "test"), (input_crop_size, input_crop_size), (crop_size, crop_size), test_batch_size, color_flag, input_transform, target_transform, ), ) return [PrefetchingIter(i) for i in iters] if prefetch else iters
# regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import os import zipfile import shutil from mxnet.test_utils import download zip_file_path = 'models/msgnet_21styles.zip' download( 'https://apache-mxnet.s3-accelerate.amazonaws.com/gluon/models/msgnet_21styles-2cb88353.zip', zip_file_path) with zipfile.ZipFile(zip_file_path) as zf: zf.extractall() os.remove(zip_file_path) shutil.move('msgnet_21styles-2cb88353.params', 'models/21styles.params')
# # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import os, zipfile import mxnet from mxnet.test_utils import download def unzip_file(filename, outpath): fh = open(filename, 'rb') z = zipfile.ZipFile(fh) for name in z.namelist(): z.extract(name, outpath) fh.close() # Dataset from COCO 2014: http://cocodataset.org/#download # The dataset annotations and site are Copyright COCO Consortium and licensed CC BY 4.0 Attribution. # The images within the dataset are available under the Flickr Terms of Use. # See http://cocodataset.org/#termsofuse for details download('http://msvocds.blob.core.windows.net/coco2014/train2014.zip', 'dataset/train2014.zip') download('http://msvocds.blob.core.windows.net/coco2014/val2014.zip', 'dataset/val2014.zip') unzip_file('dataset/train2014.zip', 'dataset') unzip_file('dataset/val2014.zip', 'dataset')
#!/usr/bin/env python #-*- coding:utf-8 -*- from mxnet.test_utils import download import os.path as osp def verified(file_path, sha1hash): import hashlib sha1 = hashlib.sha1() with open(file_path, 'rb') as f: while True: data = f.read(1048576) if not data: break sha1.update(data) matched = sha1.hexdigest() == sha1hash if not matched: print('Found hash mismatch in file {}, possibly due to incomplete download.'.format(file_path)) return matched url_format = 'https://apache-mxnet.s3-accelerate.amazonaws.com/gluon/datasets/pikachu/{}' hashes = {'train.rec': 'e6bcb6ffba1ac04ff8a9b1115e650af56ee969c8', 'train.idx': 'dcf7318b2602c06428b9988470c731621716c393', 'val.rec': 'd6c33f799b4d058e82f2cb5bd9a976f69d72d520'} for k, v in hashes.items():##键 值 fname = 'pikachu_' + k target = osp.join('data', fname)#新建数据集文件夹 url = url_format.format(k) if not osp.exists(target) or not verified(target, v): print('Downloading', target, url) download(url, fname=fname, dirname='data', overwrite=True)
def GetMNIST_pkl(): if not os.path.isdir("data"): os.makedirs('data') if not os.path.exists('data/mnist.pkl.gz'): download('http://deeplearning.net/data/mnist/mnist.pkl.gz', dirname='data')
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from mxnet.test_utils import download download( 'https://apache-mxnet.s3-accelerate.amazonaws.com/gluon/models/21styles-32f7205c.params', 'models/21styles.params')
# regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import os, zipfile import mxnet from mxnet.test_utils import download def unzip_file(filename, outpath): fh = open(filename, 'rb') z = zipfile.ZipFile(fh) for name in z.namelist(): z.extract(name, outpath) fh.close() download('http://msvocds.blob.core.windows.net/coco2014/train2014.zip', 'dataset/train2014.zip') download('http://msvocds.blob.core.windows.net/coco2014/val2014.zip', 'dataset/val2014.zip') unzip_file('dataset/train2014.zip', 'dataset') unzip_file('dataset/val2014.zip', 'dataset')
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from mxnet.test_utils import download download('https://apache-mxnet.s3-accelerate.amazonaws.com/gluon/models/21styles-32f7205c.params', 'models/21styles.params')