def get_data_prms(folderName='nicks-house', subFolderName='Angle1Lighting1'): dArgs = edict() dArgs.folderName = folderName dArgs.subFolderName = subFolderName #Save the parameters in a database dbFile = DB % 'folder-data' dArgs.prmStr = msq.get_sql_id(dbFile, dArgs) return dArgs
def get_vatic_prms(**kwargs): dArgs = edict() pths = get_basic_paths() #Directory where vatic data is dArgs.vaticDr = pths.vatic.dr #Directory where vatic data should be output dArgs.vaticOpDr = '/mnt/HardDrive/common/vatic' #merge_threshold - dictates how vatic annotatiosn are merged #no need to change this dArgs.mergeThreshold = 0.5 #Save the parameters in a database dbFile = DB % 'vatic' dArgs.prmStr = msq.get_sql_id(dbFile, dArgs, ignoreKeys=['vaticDr', 'vaticOpDr']) return dArgs
def set_rcnn_prms(**kwargs): dArgs = edict() #Object class that needs to be detected dArgs.targetClass = kwargs.get('targetClass', 'person') #NMS dArgs.nmsThresh = kwargs.get('nmsThresh', 0.3) #Detection Confidence dArgs.confThresh = kwargs.get('confThresh', 0.8) dArgs.topK = kwargs.get('topK', 5) #What classnames was the detector trained on. dArgs.trainDataSet = kwargs.get('trainDataSet', 'coco') #The net to be used dArgs.netName = kwargs.get('netName', 'vgg16-coco-rcnn') dArgs = cu.get_defaults(kwargs, dArgs, True) #Save the parameters in a database dbFile = DB % 'rcnn' dArgs._mysqlid = msq.get_sql_id(dbFile, dArgs) #verify that the target class is detectable by the model allCls = dataset2classnames(dArgs.trainDataSet) assert dArgs.targetClass in allCls return dArgs