def news():
    menu = {'ho':0, 'da':0, 'ml':10, 
            'se':0, 'co':0, 'cg':0, 'cr':0, 'wc':0,'st':0,
            'cf':0, 'ac':1, 're':0, 'cu':0,'nl':0}
    
    if request.method == 'GET':
        return render_template('advanced/imdb.html',menu=menu, weather=get_weather())
    else: 
        label = '직접 확인'
        test_data = []
        if request.form['optradio'] == 'index':

            index = int(request.form['index'] or 0)
            df = pd.read_csv('F:/workspace/Flask/03_Module/static/data/imdb_test1.csv')
            test_data.append(df.iloc[index,0])  #test_data.append(df_test.iloc[index, 0])
            label = '긍정' if df.sentiment[index] else '부정'
        else:
            
            test_data.append(request.form['review'])


        #news_pcl = joblib.load('static/model/pipeline_cl.pkl')
        #news_ptl = joblib.load('static/model/pipeline_tl.pkl')
        #pred_cl = imdb_count_lr.predict(test_data)
        #pred_tl = imdb_tfidf_lr.predict(test_data)
        pred_cl = '긍정' if imdb_count_lr.predict(test_data)[0] else '부정'
        pred_tl = '긍정' if imdb_tfidf_lr.predict(test_data)[0] else '부정'
        
        result_dict = {'label':label, 
                       'pred_cl':pred_cl,
                       'pred_tl': pred_tl}
        
        return render_template('advanced/imdb_res.html', menu=menu, review=test_data[0], 
                                res=result_dict, weather=get_weather())
Exemple #2
0
def iris():
    if request.method == 'GET':
        return render_template('classification/iris.html',
                               menu=menu,
                               weather=get_weather())
    else:
        index = int(request.form['index'] or '0')
        df = pd.read_csv('static/data/iris_test.csv')
        scaler = joblib.load('static/model/iris_scaler.pkl')
        test_data = df.iloc[index, :-1].values.reshape(1, -1)
        test_scaled = scaler.transform(test_data)
        label = df.iloc[index, -1]
        lrc = joblib.load('static/model/iris_lr.pkl')
        svc = joblib.load('static/model/iris_sv.pkl')
        rfc = joblib.load('static/model/iris_rf.pkl')
        pred_lr = lrc.predict(test_scaled)
        pred_sv = svc.predict(test_scaled)
        pred_rf = rfc.predict(test_scaled)

        species = ['Setosa', 'Versicolor', 'Virginica']
        result = {
            'index': index,
            'label': f'{label} ({species[label]})',
            'pred_lr': f'{pred_lr[0]} ({species[pred_lr[0]]})',
            'pred_sv': f'{pred_sv[0]} ({species[pred_sv[0]]})',
            'pred_rf': f'{pred_rf[0]} ({species[pred_rf[0]]})'
        }
        org = dict(zip(df.columns[:-1], df.iloc[index, :-1]))
        return render_template('classification/iris_res.html',
                               menu=menu,
                               res=result,
                               org=org,
                               weather=get_weather())
Exemple #3
0
def imgopen():
    if request.method == 'GET':
        return render_template('advanced/imgopen.html',
                               menu=menu,
                               weather=get_weather())
    else:
        f_img = request.files['image']
        kfile = open('./static/keys/etri_ai_key.txt')
        eai_key = kfile.read(100)
        openApiURL = "http://aiopen.etri.re.kr:8000/ObjectDetect"
        image_file = os.path.join(current_app.root_path,
                                  'static/upload/') + f_img.filename
        f_img.save(image_file)
        _, image_type = os.path.splitext(image_file)
        image_type = 'jpg' if image_type == '.jfif' else image_type[1:]

        file = open(image_file, 'rb')
        image_contents = base64.b64encode(file.read()).decode('utf8')
        request_json = {
            "request_id": "reserved field",
            "access_key": eai_key,
            "argument": {
                "file": image_contents,
                "type": image_type
            }
        }
        http = urllib3.PoolManager()
        response = http.request(
            "POST",
            openApiURL,
            headers={"Content-Type": "application/json; charset=UTF-8"},
            body=json.dumps(request_json))

        result = json.loads(response.data)
        obj_list = result['return_object']['data']
        image = Image.open(image_file)
        draw = ImageDraw.Draw(image)
        for obj in obj_list:
            name = obj['class']
            x = int(obj['x'])
            y = int(obj['y'])
            w = int(obj['width'])
            h = int(obj['height'])
            draw.text((x + 10, y + 10),
                      name,
                      font=ImageFont.truetype('malgun.ttf', 20),
                      fill=(255, 0, 0))
            draw.rectangle(((x, y), (x + w, y + h)),
                           outline=(255, 0, 0),
                           width=2)

        # plt.savefig(image + image_type);
        img_file = os.path.join(current_app.root_path, 'static/img/object.png')
        image.save(img_file)
        mtime = int(os.stat(img_file).st_mtime)

        return render_template('advanced/imgopen_res.html',
                               menu=menu,
                               weather=get_weather(),
                               mtime=mtime)
Exemple #4
0
def titanic():
    if request.method == 'GET':
        return render_template('classification/titanic.html', menu=menu, weather=get_weather())
    else:
        index = int(request.form['index'] or '0')
        df = pd.read_csv('static/data/titanic_test.csv')
        scaler = joblib.load('static/model/titanic_scaler.pkl')
        test_data = df.iloc[index, 1:].values.reshape(1,-1)
        test_scaled = scaler.transform(test_data)
        label = df.iloc[index, 0]
        lrc = joblib.load('static/model/titanic_lr.pkl')
        svc = joblib.load('static/model/titanic_sv.pkl')
        dtc = joblib.load('static/model/titanic_dt.pkl')
        rfc = joblib.load('static/model/titanic_rf.pkl')
        knc = joblib.load('static/model/titanic_kn.pkl')
        pred_lr = lrc.predict(test_scaled)
        pred_sv = svc.predict(test_scaled)
        pred_dt = dtc.predict(test_scaled)
        pred_rf = rfc.predict(test_scaled)
        pred_kn = knc.predict(test_scaled)
        print(label, pred_lr[0], pred_sv[0], pred_dt[0], pred_rf[0],pred_kn[0])
        titanic_dict = {'label':label, 'pred_lr':pred_lr[0], 'pred_sv':pred_sv[0], 'pred_dt':pred_dt[0], 'pred_rf': pred_rf[0], 'pred_kn': pred_kn[0]}

        tmp = df.iloc[index, 1:].values
        value_list = []
        int_index_list = [0, 1, 3, 4, 6, 7]
        for i in range(8):
            if i in int_index_list:
                value_list.append(int(tmp[i]))
            else:
                value_list.append(tmp[i])
        org = dict(zip(df.columns[1:], value_list))
        return render_template('classification/titanic_res.html', menu=menu, weather=get_weather(), res=titanic_dict, org=org)
Exemple #5
0
def pima():
    if request.method == 'GET':
        return render_template('classification/pima.html',
                               menu=menu,
                               weather=get_weather())
    else:
        index = int(request.form['index'])
        df = pd.read_csv('static/data/pima_test.csv')
        scaler = joblib.load('static/model/pima_scaler.pkl')
        test_data = df.iloc[index, :-1].values.reshape(1, -1)
        test_scaled = scaler.transform(test_data)

        label = df.iloc[index, -1]
        lrc = joblib.load('static/model/pima_lr.pkl')
        svc = joblib.load('static/model/pima_sv.pkl')
        rfc = joblib.load('static/model/pima_rf.pkl')
        pred_lr = lrc.predict(test_scaled)
        pred_sv = svc.predict(test_scaled)
        pred_rf = rfc.predict(test_scaled)
        result = {
            'index': index,
            'label': label,
            'pred_lr': pred_lr[0],
            'pred_sv': pred_sv[0],
            'pred_rf': pred_rf[0]
        }
        org = dict(zip(df.columns[:-1], df.iloc[index, :-1]))
        return render_template('classification/pima_res.html',
                               menu=menu,
                               res=result,
                               org=org,
                               weather=get_weather())
Exemple #6
0
def image():
    if request.method == 'GET':
        return render_template('advanced/image.html',
                               menu=menu,
                               weather=get_weather())
    else:
        f_img = request.files['image']
        file_img = os.path.join(current_app.root_path,
                                'static/upload/') + f_img.filename
        f_img.save(file_img)
        current_app.logger.debug(f"{f_img.filename}, {file_img}")

        img = np.array(Image.open(file_img).resize((224, 224)))
        ''' img = cv2.imread(file_img, -1)
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        img = cv2.resize(img, (224, 224)) '''
        yhat = resnet.predict(img.reshape(-1, 224, 224, 3))
        label = decode_predictions(yhat)
        label = label[0][0]
        mtime = int(os.stat(file_img).st_mtime)
        return render_template('advanced/image_res.html',
                               menu=menu,
                               weather=get_weather(),
                               name=label[1],
                               prob=np.round(label[2] * 100, 2),
                               filename=f_img.filename,
                               mtime=mtime)
Exemple #7
0
def iris():
    if request.method == 'GET':
        return render_template('classification/iris.html', menu=menu, weather=get_weather())
    else:
        # pass
        index = int(request.form['index'] or '0')
        df = pd.read_csv('static/data/iris_test.csv')
        scaler = joblib.load('static/model/iris_scaler.pkl')
        test_data = df.iloc[index, :-1].values.reshape(1,-1)
        test_scaled = scaler.transform(test_data)
        label = df.iloc[index, -1]
        lrc = joblib.load('static/model/iris_lr.pkl')
        svc = joblib.load('static/model/iris_sv.pkl')
        dtc = joblib.load('static/model/iris_dt.pkl')
        rfc = joblib.load('static/model/iris_rf.pkl')
        knc = joblib.load('static/model/iris_kn.pkl')
        pred_lr = lrc.predict(test_scaled)
        pred_sv = svc.predict(test_scaled)
        pred_dt = dtc.predict(test_scaled)
        pred_rf = rfc.predict(test_scaled)
        pred_kn = knc.predict(test_scaled)

        species = ['Setosa', 'Versicolor', 'Virginica']
        # print(label, pred_lr[0], pred_sv[0], pred_dt[0], pred_rf[0],pred_kn[0])
        iris_dict = {'label':f'{label} ({species[label]})', 'pred_lr':f'{pred_lr[0]} ({species[pred_lr[0]]})',
                    'pred_sv':f'{pred_sv[0]} ({species[pred_sv[0]]})', 'pred_dt':f'{pred_dt[0]} ({species[pred_dt[0]]})', 
                    'pred_rf':f'{pred_rf[0]} ({species[pred_rf[0]]})', 'pred_kn': f'{pred_kn[0]} ({species[pred_kn[0]]})'}
        return render_template('classification/iris_res.html', menu=menu, weather=get_weather(), iris_dict=iris_dict)
Exemple #8
0
def mnist():
    if request.method == 'GET':
        return render_template('advanced/mnist.html', menu=menu, weather=get_weather())
    else:
        index = int(request.form['index'] or '0')
        index_list = list(range(index, index+3))
        df = pd.read_csv('static/data/mnist_test.csv')

        scaler = joblib.load('static/model/mnist_scaler.pkl')
        test_data = df.iloc[index:index+3, :-1].values
        test_scaled = scaler.transform(test_data)
        label_list = df.iloc[index:index+3, -1]
        svc = joblib.load('static/model/mnist_sv.pkl')
        pred_sv = svc.predict(test_scaled)

        img_file_wo_ext = os.path.join(current_app.root_path, 'static/img/mnist')
        for i in range(3):
            digit = test_data[i].reshape(28,28)
            plt.figure(figsize=(4,4))
            plt.xticks([]); plt.yticks([])
            img_file = img_file_wo_ext + str(i+1) + '.png'
            plt.imshow(digit, cmap=plt.cm.binary, interpolation='nearest')
            plt.savefig(img_file)
        mtime = int(os.stat(img_file).st_mtime)

        result_dict = {'index':index_list, 'label':label_list, 'pred_sv':pred_sv,}
        
        return render_template('advanced/mnist_res.html', menu=menu, mtime=mtime,
                                result=result_dict, weather=get_weather())
Exemple #9
0
def naver():
    if request.method == 'GET':
        return render_template('advanced/naver.html', menu=menu, weather=get_weather())
    else:
        if request.form['option'] == 'index':
            index = int(request.form['index'] or '0')
            df_test = pd.read_csv('static/data/naver/test.tsv', sep='\t')
            org_review = df_test.document[index]
            label = '긍정' if df_test.label[index] else '부정'
        else:
            org_review = request.form['review']
            label = '리뷰 직접 입력'

        test_data = []
        review = re.sub("[^ㄱ-ㅎㅏ-ㅣ가-힣 ]", "", org_review)
        okt = Okt()
        stopwords = ['의','가','이','은','들','는','좀','잘','걍','과','도','를','으로','자','에','와','한','하다','을']
        morphs = okt.morphs(review, stem=True)     # 토큰화
        temp_X = ' '.join([word for word in morphs if not word in stopwords])   # 불용어 제거
        test_data.append(temp_X)

        pred_cl = '긍정' if naver_count_lr.predict(test_data)[0] else '부정'
        pred_cn = '긍정' if naver_count_nb.predict(test_data)[0] else '부정'
        pred_tl = '긍정' if naver_tfidf_lr.predict(test_data)[0] else '부정'
        pred_tn = '긍정' if naver_tfidf_nb.predict(test_data)[0] else '부정'
        result_dict = {
            'label': label, 'pred_cl': pred_cl, 'pred_cn': pred_cn,
            'pred_tl': pred_tl, 'pred_tn': pred_tn
        }
        return render_template('advanced/naver_res.html', menu=menu, weather=get_weather(),
                                res=result_dict, review=org_review)
def imdb():
    if request.method == 'GET':
        return render_template('advanced/imdb.html',
                               menu=menu,
                               weather=get_weather())
    else:
        test_data = []
        if request.form['option'] == 'index':
            index = int(request.form['index'] or '0')
            df_test = pd.read_csv('static/data/IMDB_test.csv')
            test_data.append(df_test.iloc[index, 0])
            label = '긍정' if df_test.sentiment[index] else '부정'
        else:
            test_data.append(request.form['review'])
            label = '직접 확인'

        imdb_count_lr = joblib.load('static/model/imdb_count_lr.pkl')
        imdb_tfidf_lr = joblib.load('static/model/imdb_tfidf_lr.pkl')
        pred_cl = '긍정' if imdb_count_lr.predict(test_data)[0] else '부정'
        pred_tl = '긍정' if imdb_tfidf_lr.predict(test_data)[0] else '부정'
        result_dict = {'label': label, 'pred_cl': pred_cl, 'pred_tl': pred_tl}
        return render_template('advanced/imdb_res.html',
                               menu=menu,
                               review=test_data[0],
                               res=result_dict,
                               weather=get_weather())
Exemple #11
0
def news():
    target_names = ['alt.atheism', 'comp.graphics', 'comp.os.ms-windows.misc',
                    'comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware', 'comp.windows.x',
                    'misc.forsale', 'rec.autos', 'rec.motorcycles', 'rec.sport.baseball',
                    'rec.sport.hockey', 'sci.crypt', 'sci.electronics', 'sci.med',
                    'sci.space', 'soc.religion.christian', 'talk.politics.guns',
                    'talk.politics.mideast', 'talk.politics.misc', 'talk.religion.misc']
    if request.method == 'GET':
        return render_template('advanced/news.html', menu=menu, weather=get_weather())
    else:
        index = int(request.form['index'] or '0')
        df = pd.read_csv('static/data/news/test.csv')
        label = f'{df.target[index]} ({target_names[df.target[index]]})'
        test_data = []
        test_data.append(df.data[index])

        news_count_lr = joblib.load('static/model/news_count_lr.pkl')
        news_tfidf_lr = joblib.load('static/model/news_tfidf_lr.pkl')
        news_tfidf_sv = joblib.load('static/model/news_tfidf_sv.pkl')
        pred_c_lr = news_count_lr.predict(test_data)
        pred_t_lr = news_tfidf_lr.predict(test_data)
        pred_t_sv = news_tfidf_sv.predict(test_data)
        result_dict = {'index':index, 'label':label, 
                       'pred_c_lr':f'{pred_c_lr[0]} ({target_names[pred_c_lr[0]]})',
                       'pred_t_lr':f'{pred_t_lr[0]} ({target_names[pred_t_lr[0]]})',
                       'pred_t_sv':f'{pred_t_sv[0]} ({target_names[pred_t_sv[0]]})'}
        
        return render_template('advanced/news_res.html', menu=menu, news=df.data[index],
                                res=result_dict, weather=get_weather())
Exemple #12
0
def translate():
    if request.method == 'GET':
        return render_template('nat_lang/nl.html',
                               menu=menu,
                               weather=get_weather())
    else:
        text = request.form['text']
        label = request.form['label']

        # 네이버 파파고
        with open('static/keys/papago_key.json') as nkey:
            json_obj = json.load(nkey)
        client_id = list(json_obj.keys())[0]
        client_secret = json_obj[client_id]
        n_url = "https://naveropenapi.apigw.ntruss.com/nmt/v1/translation"
        n_mapping = {
            'en': 'en',
            'jp': 'ja',
            'cn': 'zh-CN',
            'fr': 'fr',
            'es': 'es'
        }
        val = {"source": 'ko', "target": n_mapping[label], "text": text}
        headers = {
            "X-NCP-APIGW-API-KEY-ID": client_id,
            "X-NCP-APIGW-API-KEY": client_secret
        }
        result = requests.post(n_url, data=val, headers=headers).json()
        n_text = result['message']['result']['translatedText']

        # 카카오
        with open('static/keys/kakaoaikey.txt') as kfile:
            kai_key = kfile.read(100)
        text = text.replace('\n', '')
        text = text.replace('\r', '')
        k_url = f'https://dapi.kakao.com/v2/translation/translate?query={quote(text)}&src_lang=kr&target_lang={label}'
        result = requests.get(k_url,
                              headers={
                                  "Authorization": "KakaoAK " + kai_key
                              }).json()
        tr_text_list = result['translated_text'][0]
        k_translated_text = '\n'.join([tmp_text for tmp_text in tr_text_list])

        # 카카오 번역2
        ''' with open('static/keys/kakaoaikey.txt') as kfile:
            kai_key = kfile.read(100)
        def generate_url(text, src, dst):
            return f'https://dapi.kakao.com/v2/translation/translate?query={quote(text)}&src_lang={src}&target_lang={dst}'
        
        k_target = {'en': 'en', 'ja':'jp', 'zh':'cn', 'fr':'fr', 'es':'es'}
        result = requests.get(generate_url(text, 'kr', k_target[label]), 
                    headers={"Authorization": "KakaoAK "+ kai_key}).json()

        kaka_text = result['translatedtext'][0][0] '''

        n_dt = {'text': text, 'n_text': n_text, 'kaka_text': k_translated_text}
        return render_template('nat_lang/nl_res.html',
                               menu=menu,
                               weather=get_weather(),
                               ndt=n_dt)
Exemple #13
0
def imdb():
    if request.method == 'GET':
        return render_template('advanced/imdb.html',
                               menu=menu,
                               weather=get_weather())
    else:
        # pass
        test_data = []
        label = '직접 확인'
        if request.form['option'] == 'index':
            index = int(request.form['index'] or '0')
            df = pd.read_csv('static/data/imdb_test.csv')
            test_data.append(df.review[index])
            # label = f'{df.sentiment[index]}'
            label = '(긍정)' if df.sentiment[index] else '(부정)'
        else:
            test_data.append(request.form['review'])

        pred_c_lr = imdb_count_lr.predict(test_data)
        pred_t_lr = imdb_tfidf_lr.predict(test_data)
        imdb_dict = {
            'label': label,
            'pred_c_lr': pred_c_lr[0],
            'pred_t_lr': pred_t_lr[0]
        }
        return render_template('advanced/imdb_res.html',
                               menu=menu,
                               imdb=test_data[0],
                               ies=imdb_dict,
                               weather=get_weather())
Exemple #14
0
def stock():
    menu = {
        'ho': 0,
        'da': 1,
        'ml': 0,
        'se': 0,
        'co': 0,
        'cg': 0,
        'cr': 0,
        'st': 1,
        'wc': 0
    }
    if request.method == 'GET':
        return render_template('stock/stock.html',
                               menu=menu,
                               weather=get_weather(),
                               kospi=kospi_dict,
                               kosdaq=kosdaq_dict)
    else:
        market = request.form['market']
        if market == 'KS':
            code = request.form['kospi_code']
            company = kospi_dict[code]
            code += '.KS'
        else:
            code = request.form['kosdaq_code']
            company = kosdaq_dict[code]
            code += '.KQ'
        learn_period = int(request.form['learn'])
        pred_period = int(request.form['pred'])
        today = datetime.now()
        start_learn = today - timedelta(days=learn_period * 365)
        end_learn = today - timedelta(days=1)

        stock_data = pdr.DataReader(code,
                                    data_source='yahoo',
                                    start=start_learn,
                                    end=end_learn)
        current_app.logger.debug(f"get stock data: {code}")
        df = pd.DataFrame({'ds': stock_data.index, 'y': stock_data.Close})
        df.reset_index(inplace=True)
        del df['Date']

        model = Prophet(daily_seasonality=True)
        model.fit(df)
        future = model.make_future_dataframe(periods=pred_period)
        forecast = model.predict(future)

        fig = model.plot(forecast)
        img_file = os.path.join(current_app.root_path, 'static/img/stock.png')
        fig.savefig(img_file)
        mtime = int(os.stat(img_file).st_mtime)

        return render_template('stock/stock_res.html',
                               menu=menu,
                               weather=get_weather(),
                               mtime=mtime,
                               company=company,
                               code=code)
Exemple #15
0
def iris():
    menu = {
        'ho': 0,
        'da': 0,
        'ml': 10,
        'se': 0,
        'co': 0,
        'cg': 0,
        'cr': 0,
        'wc': 0,
        'st': 0,
        'cf': 0,
        'ac': 0,
        're': 1,
        'cu': 0,
        'nl': 0
    }
    if request.method == 'GET':
        return render_template('regression/iris.html',
                               menu=menu,
                               weather=get_weather())
    else:
        index = int(request.form['index'])
        feature_name = request.form['feature']
        column_dict = {
            'sl': 'Sepal length',
            'sw': 'Sepal width',
            'pl': 'Petal length',
            'pw': 'Petal width',
            'species': ['Setosa', 'Versicolor', 'Virginica']
        }
        column_list = list(column_dict.keys())

        df = pd.read_csv('static/data/iris_train.csv')
        df.columns = column_list
        X = df.drop(columns=feature_name, axis=1).values
        y = df[feature_name].values

        lr = LinearRegression()
        lr.fit(X, y)
        weight, bias = lr.coef_, lr.intercept_

        df_test = pd.read_csv('static/data/iris_test.csv')
        df_test.columns = column_list
        X_test = df_test.drop(columns=feature_name, axis=1).values[index]
        pred_value = np.dot(X_test, weight.T) + bias

        x_test = list(df_test.iloc[index, :-1].values)
        x_test.append(column_dict['species'][int(df_test.iloc[index, -1])])
        org = dict(zip(column_list, x_test))
        pred = dict(zip(column_list[:-1], [0, 0, 0, 0]))
        pred[feature_name] = np.round(pred_value, 2)
        return render_template('regression/iris_res.html',
                               menu=menu,
                               weather=get_weather(),
                               index=index,
                               org=org,
                               pred=pred,
                               feature=column_dict[feature_name])
Exemple #16
0
def translate():
    if request.method == 'GET':
        return render_template('natlang/translate.html',
                               menu=menu,
                               weather=get_weather())
    else:
        text = request.form['text']
        lang = request.form['lang']

        ### 네이버(파파고) 번역 ###
        n_url = "https://naveropenapi.apigw.ntruss.com/nmt/v1/translation"
        with open('static/keys/papago_key.json') as nkey:
            json_obj = json.load(nkey)
        client_id = list(json_obj.keys())[0]
        client_secret = json_obj[client_id]
        headers = {
            "X-NCP-APIGW-API-KEY-ID": client_id,
            "X-NCP-APIGW-API-KEY": client_secret
        }
        n_mapping = {
            'en': 'en',
            'jp': 'ja',
            'cn': 'zh-CN',
            'fr': 'fr',
            'es': 'es'
        }
        val = {"source": 'ko', "target": n_mapping[lang], "text": text}
        result = requests.post(n_url, data=val, headers=headers).json()
        naver_res = result['message']['result']['translatedText']
        #############################

        ### 카카오 번역 ###
        with open('static/keys/kakaoaikey.txt') as kfile:
            kai_key = kfile.read(100)

        text = text.replace('\n', '')
        text = text.replace('\r', '')
        k_url = f'https://dapi.kakao.com/v2/translation/translate?query={quote(text)}&src_lang=kr&target_lang={lang}'
        result = requests.get(k_url,
                              headers={
                                  "Authorization": "KakaoAK " + kai_key
                              }).json()
        tr_text_list = result['translated_text'][0]
        kakao_res = '\n'.join([tmp_text for tmp_text in tr_text_list])
        #############################

        result_dict = {
            'input': text,
            'lang': lang,
            'naver': naver_res,
            'kakao': kakao_res
        }

        return render_template('natlang/translate_res.html',
                               menu=menu,
                               weather=get_weather(),
                               res=result_dict)
Exemple #17
0
def titanic():
    menu = {
        'ho': 0,
        'da': 0,
        'ml': 10,
        'se': 0,
        'co': 0,
        'cg': 0,
        'cr': 0,
        'wc': 0,
        'st': 0,
        'cf': 1,
        'ac': 0,
        're': 0,
        'cu': 0,
        'nl': 0
    }
    if request.method == 'GET':
        return render_template('classification/titanic.html',
                               menu=menu,
                               weather=get_weather())
    else:
        index = int(request.form['index'])
        df = pd.read_csv('static/data/titanic_test.csv')
        scaler = joblib.load('static/model/titanic_scaler.pkl')
        test_data = df.iloc[index, :-1].values.reshape(1, -1)
        test_scaled = scaler.transform(test_data)
        label = df.iloc[index, 0]
        lrc = joblib.load('static/model/titanic_lr.pkl')
        svc = joblib.load('static/model/titanic_sv.pkl')
        rfc = joblib.load('static/model/titanic_rf.pkl')
        pred_lr = lrc.predict(test_scaled)
        pred_sv = svc.predict(test_scaled)
        pred_rf = rfc.predict(test_scaled)
        result = {
            'index': index,
            'label': label,
            'pred_lr': pred_lr[0],
            'pred_sv': pred_sv[0],
            'pred_rf': pred_rf[0]
        }

        tmp = df.iloc[index, 1:].values
        value_list = []
        int_index_list = [0, 1, 3, 4, 6, 7]
        for i in range(8):
            if i in int_index_list:
                value_list.append(int(tmp[i]))
            else:
                value_list.append(tmp[i])
        org = dict(zip(df.columns[1:], value_list))
        return render_template('classification/titanic_res.html',
                               menu=menu,
                               res=result,
                               org=org,
                               weather=get_weather())
Exemple #18
0
def detect():
    if request.method == 'GET':
        return render_template('advanced/detect.html', menu=menu, weather=get_weather())
    else:
        f_img = request.files['image']
        file_img = os.path.join(current_app.root_path, 'static/upload/') + f_img.filename
        f_img.save(file_img)
        _, image_type = os.path.splitext(f_img.filename)
        image_type = 'jpg' if image_type == '.jfif' else image_type[1:]
        current_app.logger.debug(f"{f_img.filename}, {image_type}")

        # 공공 인공지능 Open API - 객체 검출
        with open('static/keys/etri_ai_key.txt') as kfile:
            eai_key = kfile.read(100)
        with open(file_img, 'rb') as file:
            image_contents = base64.b64encode(file.read()).decode('utf8')
        openApiURL = "http://aiopen.etri.re.kr:8000/ObjectDetect"
        request_json = {
            "request_id": "reserved field",
            "access_key": eai_key,
            "argument": {
                "file": image_contents,
                "type": image_type
            }
        }
        http = urllib3.PoolManager()
        response = http.request(
            "POST",
            openApiURL,
            headers={"Content-Type": "application/json; charset=UTF-8"},
            body=json.dumps(request_json)
        )
        if response.status != 200:
            return redirect(url_for('aclsf_bp.detect'))

        result_json = json.loads(response.data)
        obj_list = result_json['return_object']['data']
        image = Image.open(file_img)
        draw = ImageDraw.Draw(image)
        object_list = []
        for obj in obj_list:
            name = obj['class']
            x = int(obj['x'])
            y = int(obj['y'])
            w = int(obj['width'])
            h = int(obj['height'])
            draw.text((x+10,y+10), name, font=ImageFont.truetype('malgun.ttf', 20), fill=(255,0,0))
            draw.rectangle(((x, y), (x+w, y+h)), outline=(255,0,0), width=2)
            object_list.append(name)
        object_img = os.path.join(current_app.root_path, 'static/img/object.'+image_type)
        image.save(object_img)
        mtime = int(os.stat(object_img).st_mtime)
        return render_template('advanced/detect_res.html', menu=menu, weather=get_weather(),
                               object_list=', '.join(obj for obj in object_list),
                               filename='object.'+image_type, mtime=mtime) 
Exemple #19
0
def iris():
    menu = {
        'ho': 0,
        'da': 0,
        'ml': 10,
        'se': 0,
        'co': 0,
        'cg': 0,
        'cr': 0,
        'wc': 0,
        'st': 0,
        'cf': 1,
        'ac': 0,
        're': 0,
        'cu': 0,
        'nl': 0
    }
    if request.method == 'GET':
        return render_template('classification/iris.html',
                               menu=menu,
                               weather=get_weather())
    else:
        index = int(request.form['index'])
        df = pd.read_csv('static/data/iris_test.csv')
        scaler = joblib.load('static/model/iris_scaler.pkl')
        test_data = df.iloc[index, :-1].values.reshape(1, -1)
        test_scaled = scaler.transform(test_data)

        label = df.iloc[index, -1]
        lrc = joblib.load('static/model/iris_lr.pkl')
        svc = joblib.load('static/model/iris_sv.pkl')
        rfc = joblib.load('static/model/iris_rf.pkl')
        pred_lr = lrc.predict(test_scaled)
        pred_sv = svc.predict(test_scaled)
        pred_rf = rfc.predict(test_scaled)

        species = ['Setosa', 'Versicolor', 'Virginica']

        result = {
            'index': index,
            'label': label,
            'pred_lr': pred_lr[0],
            'pred_sv': pred_sv[0],
            'pred_rf': pred_rf[0],
            'species': species[pred_sv[0]]
        }
        org = dict(zip(df.columns[:], df.iloc[index, :]))

        return render_template('classification/iris_res.html',
                               menu=menu,
                               res=result,
                               org=org,
                               weather=get_weather())
Exemple #20
0
def digits():
    if request.method == 'GET':
        return render_template('advanced/digits.html',
                               menu=menu,
                               weather=get_weather())
    else:
        # pass
        index = int(request.form['index'] or '0')
        index_list = list(range(index, index + 5))
        digits = load_digits()
        df = pd.read_csv('static/data/digits_test.csv')
        img_index_list = df['index'].values
        target_index_list = df['target'].values
        index_list = img_index_list[index:index + 5]

        scaler = MinMaxScaler()
        scaled_test = scaler.fit_transform(
            df.drop(columns=['index', 'target'], axis=1))
        test_data = scaled_test[index:index + 5, :]
        label_list = target_index_list[index:index + 5]
        lrc = joblib.load('static/model/digits_lr.pkl')
        svc = joblib.load('static/model/digits_sv.pkl')
        rfc = joblib.load('static/model/digits_rf.pkl')
        pred_lr = lrc.predict(test_data)
        pred_sv = svc.predict(test_data)
        pred_rf = rfc.predict(test_data)

        img_file_wo_ext = os.path.join(current_app.root_path,
                                       'static/img/digit')
        for k, i in enumerate(index_list):
            plt.figure(figsize=(2, 2))
            plt.xticks([])
            plt.yticks([])
            img_file = img_file_wo_ext + str(k + 1) + '.png'
            plt.imshow(digits.images[i],
                       cmap=plt.cm.binary,
                       interpolation='nearest')
            plt.savefig(img_file)
        mtime = int(os.stat(img_file).st_mtime)

        result_dict = {
            'index': index_list,
            'label': label_list,
            'pred_lr': pred_lr,
            'pred_sv': pred_sv,
            'pred_rf': pred_rf
        }

        return render_template('advanced/digits_res.html',
                               menu=menu,
                               mtime=mtime,
                               result=result_dict,
                               weather=get_weather())
def naver():
    menu = {'ho':0, 'da':0, 'ml':10, 
            'se':0, 'co':0, 'cg':0, 'cr':0, 'wc':0,'st':0,
            'cf':0, 'ac':1, 're':0, 'cu':0,'nl':0}
    
    if request.method == 'GET':
        return render_template('advanced/naverR.html',menu=menu, weather=get_weather())
    else: 
        
       
        if request.form['optradio'] == 'index':
            #int로 들어올때
            index = int(request.form['index'] or 0)
            df = pd.read_csv('F:/workspace/machine-Learning/00.data/naverMovie/test.tsv' ,sep='\t')
            #test_data.append(df.iloc[index,2])  
            org_review = df.document[index]
            state = '긍정' if df.label[index] else '부정'
        else:
            #직접입력
            org_review = request.form['review']
            state = '직접 입력'
            

        
        test_data = []
        
        review= re.sub("[^ㄱ-ㅎㅏ-ㅣ가-힣 ]","",org_review)
        okt = Okt()
        morphs =okt.morphs(review,stem= True)
        stopwords = [ '의','가','이','은','들','는','좀','잘','걍','과','도','를','으로','자','에','와','한','하다']
        temp_X = ' '.join([word for word in morphs if not word in stopwords])
        test_data.append(temp_X)


        naver_count_lr = joblib.load('static/model/Npipeline_cl.pkl')
        naver_tfidf_lr = joblib.load('static/model/Npipeline_tl.pkl')
        naver_count_nv = joblib.load('static/model/Npipeline_cn.pkl')
        naver_tfidf_nv = joblib.load('static/model/Npipeline_tn.pkl')

        
        pred_cl = '긍정' if naver_count_lr.predict(test_data)[0] else '부정'
        pred_tl = '긍정' if naver_tfidf_lr.predict(test_data)[0] else '부정'
        pred_cn = '긍정' if naver_count_nv.predict(test_data)[0] else '부정'
        pred_tn = '긍정' if naver_tfidf_nv.predict(test_data)[0] else '부정'
        
        result_dict = {'state':state, 
                       'pred_cl':pred_cl, 'pred_cn':pred_cn, 'pred_tn': pred_tn,
                       'pred_tl': pred_tl}
        
        return render_template('advanced/naverR_res.html', menu=menu, review=org_review, 
                                res=result_dict, weather=get_weather())
Exemple #22
0
def diabetes():
    if request.method == 'GET':
        return render_template('regression/diabetes.html',
                               menu=menu,
                               weather=get_weather())
    else:
        # pass
        index = int(request.form['index'] or '0')
        feature_name = request.form['feature']
        df = pd.read_csv('static/data/diabetes_train.csv')
        X = df[feature_name].values.reshape(-1, 1)
        y = df.target.values

        lr = LinearRegression()
        lr.fit(X, y)
        weight, bias = lr.coef_, lr.intercept_

        df_test = pd.read_csv('static/data/diabetes_test.csv')
        X_test = df_test[feature_name][index]
        y_test = df_test.target[index]
        # pred = X_test * weight[0] + bias
        pred = np.round(X_test * weight[0] + bias, 2)

        # 시각화
        y_min = np.min(X) * weight[0] + bias
        y_max = np.max(X) * weight[0] + bias

        plt.figure()
        plt.scatter(X, y, label='train')
        plt.plot([np.min(X), np.max(X)], [y_min, y_max], 'r', lw=3)
        plt.scatter([X_test], [y_test], c='r', marker='*', s=100, label='test')
        plt.grid()
        plt.legend()
        plt.title(f'{feature_name}')
        img_file = os.path.join(current_app.root_path,
                                'static/img/diabetes.png')
        plt.savefig(img_file)
        mtime = int(os.stat(img_file).st_mtime)

        result_dict = {
            'index': index,
            'feature': feature_name,
            'y': y_test,
            'pred': pred
        }
        return render_template('regression/diabetes_res.html',
                               menu=menu,
                               weather=get_weather(),
                               mtime=mtime,
                               res=result_dict)
Exemple #23
0
def music_jquery():
    menu = {'ho':0, 'da':1, 'ml':0, 
            'se':0, 'co':0, 'cg':0, 'cr':1, 'wc':0,
            'cf':0, 'ac':0, 're':0, 'cu':0}
    music_list = cu.genie()
    return render_template('crawling/music_jquery.html', menu=menu, weather=get_weather(),
                            music_list=music_list)
Exemple #24
0
def coffee():
    if request.method == 'GET':
        return render_template('cartogram/coffee.html', menu=menu, weather=get_weather_main())
    else:
        item = request.form['item'] # 파일 저장
        f = request.files['csv']
        #filename = os.path.join(current_app.root_path, 'static/upload/') + secure_filename(f.filename)
        filename = os.path.join(current_app.root_path, 'static/upload/') + f.filename
        f.save(filename)
        current_app.logger.info(f'{filename} is saved.')

# 화면에 쓰기위한것 
        # 커피데이터를 정수로 읽기 위해 int로 줌
        coffee_index = pd.read_csv(filename, dtype={'이디야 매장수': int, '스타벅스 매장수':int, '커피빈 매장수': int, '빽다방 매장수':int})
        # 컬러를 따로 주기위해 따로 칼라맵 코드를 만들어서 줌
        color_dict = {'커피지수':'Reds', '이디야 매장수':'Blues', '스타벅스 매장수': 'Greens','커피빈 매장수':'Purples', '빽다방 매장수':'PuBu'}
        # 이미지 파일을 만드는 것
        img_file = os.path.join(current_app.root_path, 'static/img/coffee.png') # 파일이름
        dk.drawKorea(item, coffee_index, color_dict[item], img_file) # 파일이름을 drawKorea에게 전달
        mtime = int(os.stat(img_file).st_mtime)

        #top10 만들기
        # 컬럼명으로 솔팅해서 id랑 item 을 빼옴
        df = coffee_index.sort_values(by=item, ascending=False)[['ID', item]].reset_index()
        top10={}
        for i in range(10): # 랜더링할때 라운딩을 해서 소수점 2자리까지 
            top10[df['ID'][i]] = round(df[item][i], 2)
        return render_template('cartogram/coffee_res.html', menu=menu, weather=get_weather(), 
                                mtime=mtime, item=item, top10=top10)
Exemple #25
0
def park_gu(option):
    menu = {
        'ho': 0,
        'da': 1,
        'ml': 0,
        'se': 1,
        'co': 0,
        'cg': 0,
        'cr': 0,
        'st': 0,
        'wc': 0
    }
    park_new = pd.read_csv('./static/data/park_info.csv')
    park_gu = pd.read_csv('./static/data/park_gu.csv')
    park_gu.set_index('지역', inplace=True)
    geo_str = json.load(
        open('./static/data/skorea_municipalities_geo_simple.json',
             encoding='utf8'))

    # if- ifelse문을 반복문으로 변경
    option_dict = {
        'area': '공원면적',
        'count': '공원수',
        'area_ratio': '공원면적비율',
        'per_person': '인당공원면적'
    }
    column_index = option_dict[option].replace(' ', '')

    map = folium.Map(location=[37.5502, 126.982],
                     zoom_start=11,
                     tiles='Stamen Toner')
    map.choropleth(geo_data=geo_str,
                   data=park_gu[column_index],
                   columns=[park_gu.index, park_gu[column_index]],
                   fill_color='PuRd',
                   key_on='feature.id')

    for i in park_new.index:
        folium.CircleMarker(
            [park_new.lat[i], park_new.lng[i]],
            radius=int(park_new['size'][i]),
            tooltip=f"{park_new['공원명'][i]}({int(park_new.area[i])}㎡)",
            color='green',
            fill_color='green').add_to(map)

    html_file = os.path.join(current_app.root_path, 'static/img/park_gu.html')
    map.save(html_file)
    mtime = int(os.stat(html_file).st_mtime)
    option_dict = {
        'area': '공원면적',
        'count': '공원수',
        'area_ratio': '공원면적 비율',
        'per_person': '인당 공원면적'
    }
    return render_template('seoul/park_gu.html',
                           menu=menu,
                           weather=get_weather(),
                           option=option,
                           option_dict=option_dict,
                           mtime=mtime)
Exemple #26
0
def population(option):
    menu = {
        'ho': 0,
        'da': 1,
        'ml': 0,
        'se': 0,
        'co': 0,
        'cg': 1,
        'cr': 0,
        'st': 0,
        'wc': 0
    }
    df_pop = pd.read_csv('./static/data/population.csv')
    column_dict = {'extinction': '소멸위기지역', 'g_extinction': '소멸비율'}
    color_dict = {'extinction': 'Blues', 'g_extinction': 'Greens'}

    img_file = os.path.join(current_app.root_path,
                            'static/img/population.png')  # 파일이름
    dk.drawKorea(column_dict[option], df_pop, color_dict[option],
                 img_file)  # 소멸위기지역, df, 컬러, 이미지파일 전달
    mtime = int(os.stat(img_file).st_mtime)
    return render_template('cartogram/population.html',
                           menu=menu,
                           weather=get_weather(),
                           option=option,
                           column_dict=column_dict,
                           mtime=mtime)
Exemple #27
0
def book():
    menu = {'ho':0, 'da':1, 'ml':0, 
            'se':0, 'co':0, 'cg':0, 'cr':1, 'wc':0,
            'cf':0, 'ac':0, 're':0, 'cu':0}
    book_list = cu.interpark()
    return render_template('crawling/book.html', menu=menu, weather=get_weather(),
                            book_list=book_list)
def food():
    menu = {
        'ho': 0,
        'da': 1,
        'ml': 0,
        'se': 0,
        'co': 0,
        'cg': 0,
        'cr': 1,
        'st': 0,
        'wc': 0,
        'cf': 0,
        'ac': 0,
        're': 0,
        'cu': 0,
        'nl': 0
    }
    if request.method == 'GET':
        place = request.args.get('place', '발산역')
        rest_list = cu.siksin(place)
        return render_template('crawling/food.html',
                               menu=menu,
                               weather=get_weather(),
                               rest_list=rest_list,
                               place=place)
    else:
        place = request.form['place']
        return redirect(url_for('crawl_bp.food') + f'?place={place}')
Exemple #29
0
def naver():
    if request.method == 'GET':
        return render_template('advanced/naver.html',
                               menu=menu,
                               weather=get_weather())
    else:
        # pass
        if request.form['option'] == 'index':
            index = int(request.form['index'] or '0')
            df_test = pd.read_csv('static/data/naver/movie_test.tsv', sep='\t')
            # test_data.append(df_test.document[index])
            org_review = df_test.document[index]
            # label = f'{df_test.sentiment[index]}'
            label = '(긍정)' if df_test.label[index] else '(부정)'
        else:
            org_review = request.form['review']
            label = '직접 확인'
            # test_data.append(request.form['review'])
        test_data = []
        review = re.sub("[^ㄱ-ㅎㅏ-ㅣ가-힣 ]", "", org_review)
        okt = Okt()
        stopwords = [
            '의', '가', '이', '은', '들', '는', '좀', '잘', '걍', '과', '도', '를', '으로',
            '자', '에', '와', '한', '하다', '을'
        ]
        morphs = okt.morphs(review, stem=True)  # 토큰화
        temp_X = ' '.join([word for word in morphs
                           if not word in stopwords])  # 불용어 제거
        test_data.append(temp_X)

        pred_c_lr = naver_count_lr.predict(test_data)
        pred_c_nb = naver_count_nb.predict(test_data)
        pred_t_lr = naver_tfid_lr.predict(test_data)
        pred_t_nb = naver_tfid_nb.predict(test_data)
        naver_dict = {
            'label': label,
            'pred_c_lr': pred_c_lr[0],
            'pred_c_nb': pred_c_nb[0],
            'pred_t_lr': pred_t_lr[0],
            'pred_t_nb': pred_t_nb[0]
        }
        return render_template('advanced/naver_res.html',
                               menu=menu,
                               imdb=test_data[0],
                               nav=naver_dict,
                               weather=get_weather())
def cancer():
    menu = {
        'ho': 0,
        'da': 0,
        'ml': 10,
        'se': 0,
        'co': 0,
        'cg': 0,
        'cr': 0,
        'wc': 0,
        'cf': 1,
        'ac': 0,
        're': 0,
        'cu': 0
    }
    if request.method == 'GET':
        return render_template('classification/cancer.html',
                               menu=menu,
                               weather=get_weather())
    else:
        index = int(request.form['index'])
        df = pd.read_csv('static/data/cancer_test.csv')
        scaler = MinMaxScaler()
        scaled_test = scaler.fit_transform(df.iloc[:, :-1])
        test_data = scaled_test[index, :].reshape(1, -1)
        label = df.iloc[index, -1]
        lrc = joblib.load('static/model/cancer_lr.pkl')
        svc = joblib.load('static/model/cancer_sv.pkl')
        rfc = joblib.load('static/model/cancer_rf.pkl')
        pred_lr = lrc.predict(test_data)
        pred_sv = svc.predict(test_data)
        pred_rf = rfc.predict(test_data)
        result = {
            'index': index,
            'label': label,
            'pred_lr': pred_lr[0],
            'pred_sv': pred_sv[0],
            'pred_rf': pred_rf[0]
        }
        org = dict(zip(df.columns[:-1], df.iloc[index, :-1]))
        return render_template('classification/cancer_res.html',
                               menu=menu,
                               res=result,
                               org=org,
                               weather=get_weather())