Exemple #1
0
import numpy as np
import yaml
import pickle
from scipy.optimize import minimize
import torch
from torch import nn
from torch.utils.data import DataLoader
from torch.cuda.amp import autocast

from mykaggle.util.logger import get_logger
from mykaggle.model.model import get_model
from mykaggle.trainer.base import Mode
from mykaggle.dataloader.dataloader import get_dataloader
from mykaggle.dataloader.dataset import get_dataset

LOGGER = get_logger(__name__)


def predict(model: nn.Module,
            df: pd.DataFrame,
            dataloader: DataLoader,
            batch_size: int,
            num_classes: int,
            use_amp: bool = True) -> np.ndarray:
    if num_classes > 1:
        preds = np.zeros((len(df), num_classes), dtype=np.float32)
    else:
        preds = np.zeros((len(df)), dtype=np.float32)
    device = torch.device('cuda')
    model.to(device)
    model.eval()
Exemple #2
0
from typing import Any, List, Dict, Optional
import time
import pandas as pd
from mykaggle.feature.base import Feature
from mykaggle.util.logger import get_logger

logger = get_logger(__name__)


class FeatureFactory:
    @classmethod
    def run(cls,
            names: List[str],
            params: Dict[str, Dict[str, Any]],
            base: pd.DataFrame,
            others: pd.DataFrame,
            train: bool,
            use_cache: bool = False,
            save_cache: bool = False) -> pd.DataFrame:
        '''
        与えられた特徴の名前とパラメータのリストから train/test の特徴を作って返す
        '''
        features = cls.get_features(names, params, train=train)
        df = cls.create_feature(features, base, others, use_cache, save_cache,
                                params)
        return df

    @classmethod
    def get_features(cls, names: List[str], params: Dict[str, Dict[str, Any]],
                     train: bool) -> List[Feature]:
        '''