def proc_corpus(docs): """ Preprocess the documents Param: --------- docs: list of string, each string corresponds to a document Return: --------- docs: list of tokens(list of string), each tokens corresponds to a preprocessed document """ return [transform(doc, ALL_PIPELINE_NAMES) for doc in docs]
def main(): # parameters collection_name = "nips" years = xrange(2008, 2015) # 10 ~ 14 n_topics = 6 n_top_words = 15 # load corpus corpus_paths = map(lambda y: "data/{}-{}.dat".format(collection_name, y), years) all_corpus = [] year2corpus = {} for year, path in zip(years, corpus_paths): corpus = list(load_line_corpus(path)) all_corpus.append(corpus) year2corpus[year] = corpus all_corpus = list(itertools.chain.from_iterable(all_corpus)) preprocessor = lambda doc: ' '.join(transform(doc, ALL_PIPELINE_NAMES)) tokenizer = lambda doc: doc.split() with codecs.open('data/lemur-stopwords.txt', 'r' 'utf8') as f: stop_words = map(lambda s: s.strip(), f.readlines()) vectorizer = CountVectorizer(preprocessor=preprocessor, tokenizer=tokenizer, stop_words=stop_words, min_df=5) X = vectorizer.fit_transform(all_corpus) id2word = {id_: word for word, id_ in vectorizer.vocabulary_.items()} # build the model model = lda.LDA(n_topics=n_topics, n_iter=700, # alpha=1.0, eta=1.0, random_state=1) model.fit(X) # print topics for i, topic_dist in enumerate(model.topic_word_): top_word_ids = np.argsort(topic_dist)[:-n_top_words:-1] topic_words = [id2word[id_] for id_ in top_word_ids] print('Topic {}: {}'.format(i, ' '.join(topic_words))) year2docs = {} start_document_index = 0 for year in years: corpus_size = len(year2corpus[year]) end_document_index = start_document_index + corpus_size year2docs[year] = np.arange(start_document_index, end_document_index) start_document_index = end_document_index tbl = doc_topic_strengths_over_periods(model.doc_topic_, year2docs) print tbl print np.array(tbl.values())