def __init__(self, in_channels, num_classes, conv_block=None):
        super(InceptionAux, self).__init__()
        if conv_block is None:
            conv_block = BasicConv2d

        self.avgpool = my_AdaptiveAvgPool2d((4,4))
        self.conv = conv_block(in_channels, 128, kernel_size=1)
        self.relu = my_ReLU(inplace=True)

        self.fc1 = my_Linear(2048, 1024)
        self.fc2 = my_Linear(1024, num_classes)

        self._mode = 0
Exemple #2
0
    def __init__(self, vgg_name):
        super(my_VGG, self).__init__(vgg_name)
        self.features = self._make_layers(my_cfg[vgg_name])
        #        self.classifier = my_Linear(25088, 4096)
        self.classifier = my_Linear(64, 20)

        ###!!! Mandatory variables
        # _layers
        self._layers = None
Exemple #3
0
 def __init__(self, features, num_classes=1000, init_weights=True):
     super(my_VGG, self).__init__(features,
                                  num_classes=num_classes,
                                  init_weights=init_weights)
     self.features = features
     #self.avgpool = nn.AdaptiveAvgPool2d((7, 7))
     self.avgpool = my_AvgPool2d(kernel_size=1, stride=1)
     self.classifier = nn.Sequential(
         my_Linear(512 * 7 * 7, 4096),
         #            my_Linear(36, 4096),
         my_ReLU(True),
         nn.Dropout(),
         my_Linear(4096, 4096),
         my_ReLU(True),
         nn.Dropout(),
         my_Linear(4096, num_classes),
     )
     self._layers = None
     self._verbose = True
     if init_weights:
         self._initialize_weights()
    def __init__(self, num_classes=1000, aux_logits=True, transform_input=False, init_weights=True,
                 blocks=None):
        super(GoogLeNet, self).__init__()
        if blocks is None:
            blocks = [BasicConv2d, Inception, InceptionAux]
        assert len(blocks) == 3
        conv_block = blocks[0]
        inception_block = blocks[1]
        inception_aux_block = blocks[2]

        self.aux_logits = aux_logits
        self.transform_input = transform_input

        self.conv1 = conv_block(3, 64, kernel_size=7, stride=2, padding=3)
        self.maxpool1 = my_MaxPool2d(3, stride=2, ceil_mode=True)
        self.conv2 = conv_block(64, 64, kernel_size=1)
        self.conv3 = conv_block(64, 192, kernel_size=3, padding=1)
        self.maxpool2 = my_MaxPool2d(3, stride=2, ceil_mode=True)

        self.inception3a = inception_block(192, 64, 96, 128, 16, 32, 32)
        self.inception3b = inception_block(256, 128, 128, 192, 32, 96, 64)
        self.maxpool3 = my_MaxPool2d(3, stride=2, ceil_mode=True)

        self.inception4a = inception_block(480, 192, 96, 208, 16, 48, 64)
        self.inception4b = inception_block(512, 160, 112, 224, 24, 64, 64)
        self.inception4c = inception_block(512, 128, 128, 256, 24, 64, 64)
        self.inception4d = inception_block(512, 112, 144, 288, 32, 64, 64)
        self.inception4e = inception_block(528, 256, 160, 320, 32, 128, 128)
        self.maxpool4 = my_MaxPool2d(2, stride=2, ceil_mode=True)

        self.inception5a = inception_block(832, 256, 160, 320, 32, 128, 128)
        self.inception5b = inception_block(832, 384, 192, 384, 48, 128, 128)

        ##!! Mandatory variables
        self._layers = None 

        if aux_logits:
            self.aux1 = inception_aux_block(512, num_classes)
            self.aux2 = inception_aux_block(528, num_classes)

        self.avgpool = my_AdaptiveAvgPool2d((1, 1))
        self.dropout = nn.Dropout(0.2)
        self.fc = my_Linear(1024, num_classes)

        if init_weights:
            self._initialize_weights()
Exemple #5
0
    def __init__(self,
                 block,
                 layers,
                 num_classes=1000,
                 zero_init_residual=False,
                 groups=1,
                 width_per_group=64,
                 replace_stride_with_dilation=None,
                 norm_layer=None):
        super(ResNet, self).__init__()
        if norm_layer is None:
            norm_layer = my_BatchNorm2d
        self._norm_layer = norm_layer

        self.inplanes = 64
        self.dilation = 1
        if replace_stride_with_dilation is None:
            # each element in the tuple indicates if we should replace
            # the 2x2 stride with a dilated convolution instead
            replace_stride_with_dilation = [False, False, False]
        if len(replace_stride_with_dilation) != 3:
            raise ValueError("replace_stride_with_dilation should be None "
                             "or a 3-element tuple, got {}".format(
                                 replace_stride_with_dilation))
        self.groups = groups
        self.base_width = width_per_group
        self.conv1 = my_Conv2d(3,
                               self.inplanes,
                               kernel_size=7,
                               stride=2,
                               padding=3,
                               bias=False)
        self.bn1 = norm_layer(self.inplanes)
        self.relu = my_ReLU(inplace=True)
        self.maxpool = my_MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block,
                                       128,
                                       layers[1],
                                       stride=2,
                                       dilate=replace_stride_with_dilation[0])
        self.layer3 = self._make_layer(block,
                                       256,
                                       layers[2],
                                       stride=2,
                                       dilate=replace_stride_with_dilation[1])
        self.layer4 = self._make_layer(block,
                                       512,
                                       layers[3],
                                       stride=2,
                                       dilate=replace_stride_with_dilation[2])
        self.avgpool = my_AdaptiveAvgPool2d((1, 1))
        #self.avgpool = my_AdaptiveAvgPool2d(1)
        self.fc = my_Linear(512 * block.expansion, num_classes)

        ##!! Mandatory variables
        self._layers = None

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight,
                                        mode='fan_out',
                                        nonlinearity='relu')
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

        # Zero-initialize the last BN in each residual branch,
        # so that the residual branch starts with zeros, and each residual block behaves like an identity.
        # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
        if zero_init_residual:
            for m in self.modules():
                if isinstance(m, Bottleneck):
                    nn.init.constant_(m.bn3.weight, 0)
                elif isinstance(m, BasicBlock):
                    nn.init.constant_(m.bn2.weight, 0)