def __init__(self, in_channels, num_classes, conv_block=None): super(InceptionAux, self).__init__() if conv_block is None: conv_block = BasicConv2d self.avgpool = my_AdaptiveAvgPool2d((4,4)) self.conv = conv_block(in_channels, 128, kernel_size=1) self.relu = my_ReLU(inplace=True) self.fc1 = my_Linear(2048, 1024) self.fc2 = my_Linear(1024, num_classes) self._mode = 0
def __init__(self, vgg_name): super(my_VGG, self).__init__(vgg_name) self.features = self._make_layers(my_cfg[vgg_name]) # self.classifier = my_Linear(25088, 4096) self.classifier = my_Linear(64, 20) ###!!! Mandatory variables # _layers self._layers = None
def __init__(self, features, num_classes=1000, init_weights=True): super(my_VGG, self).__init__(features, num_classes=num_classes, init_weights=init_weights) self.features = features #self.avgpool = nn.AdaptiveAvgPool2d((7, 7)) self.avgpool = my_AvgPool2d(kernel_size=1, stride=1) self.classifier = nn.Sequential( my_Linear(512 * 7 * 7, 4096), # my_Linear(36, 4096), my_ReLU(True), nn.Dropout(), my_Linear(4096, 4096), my_ReLU(True), nn.Dropout(), my_Linear(4096, num_classes), ) self._layers = None self._verbose = True if init_weights: self._initialize_weights()
def __init__(self, num_classes=1000, aux_logits=True, transform_input=False, init_weights=True, blocks=None): super(GoogLeNet, self).__init__() if blocks is None: blocks = [BasicConv2d, Inception, InceptionAux] assert len(blocks) == 3 conv_block = blocks[0] inception_block = blocks[1] inception_aux_block = blocks[2] self.aux_logits = aux_logits self.transform_input = transform_input self.conv1 = conv_block(3, 64, kernel_size=7, stride=2, padding=3) self.maxpool1 = my_MaxPool2d(3, stride=2, ceil_mode=True) self.conv2 = conv_block(64, 64, kernel_size=1) self.conv3 = conv_block(64, 192, kernel_size=3, padding=1) self.maxpool2 = my_MaxPool2d(3, stride=2, ceil_mode=True) self.inception3a = inception_block(192, 64, 96, 128, 16, 32, 32) self.inception3b = inception_block(256, 128, 128, 192, 32, 96, 64) self.maxpool3 = my_MaxPool2d(3, stride=2, ceil_mode=True) self.inception4a = inception_block(480, 192, 96, 208, 16, 48, 64) self.inception4b = inception_block(512, 160, 112, 224, 24, 64, 64) self.inception4c = inception_block(512, 128, 128, 256, 24, 64, 64) self.inception4d = inception_block(512, 112, 144, 288, 32, 64, 64) self.inception4e = inception_block(528, 256, 160, 320, 32, 128, 128) self.maxpool4 = my_MaxPool2d(2, stride=2, ceil_mode=True) self.inception5a = inception_block(832, 256, 160, 320, 32, 128, 128) self.inception5b = inception_block(832, 384, 192, 384, 48, 128, 128) ##!! Mandatory variables self._layers = None if aux_logits: self.aux1 = inception_aux_block(512, num_classes) self.aux2 = inception_aux_block(528, num_classes) self.avgpool = my_AdaptiveAvgPool2d((1, 1)) self.dropout = nn.Dropout(0.2) self.fc = my_Linear(1024, num_classes) if init_weights: self._initialize_weights()
def __init__(self, block, layers, num_classes=1000, zero_init_residual=False, groups=1, width_per_group=64, replace_stride_with_dilation=None, norm_layer=None): super(ResNet, self).__init__() if norm_layer is None: norm_layer = my_BatchNorm2d self._norm_layer = norm_layer self.inplanes = 64 self.dilation = 1 if replace_stride_with_dilation is None: # each element in the tuple indicates if we should replace # the 2x2 stride with a dilated convolution instead replace_stride_with_dilation = [False, False, False] if len(replace_stride_with_dilation) != 3: raise ValueError("replace_stride_with_dilation should be None " "or a 3-element tuple, got {}".format( replace_stride_with_dilation)) self.groups = groups self.base_width = width_per_group self.conv1 = my_Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = norm_layer(self.inplanes) self.relu = my_ReLU(inplace=True) self.maxpool = my_MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0]) self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1]) self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2]) self.avgpool = my_AdaptiveAvgPool2d((1, 1)) #self.avgpool = my_AdaptiveAvgPool2d(1) self.fc = my_Linear(512 * block.expansion, num_classes) ##!! Mandatory variables self._layers = None for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # Zero-initialize the last BN in each residual branch, # so that the residual branch starts with zeros, and each residual block behaves like an identity. # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 if zero_init_residual: for m in self.modules(): if isinstance(m, Bottleneck): nn.init.constant_(m.bn3.weight, 0) elif isinstance(m, BasicBlock): nn.init.constant_(m.bn2.weight, 0)