Exemple #1
0
    def _run(self, duration, logf, logt, log_interval, report_nan, progress,
             msg):
        # Simulation times
        if duration < 0:
            raise Exception('Simulation duration can\'t be negative.')
        tmin = self._time
        tmax = tmin + duration

        # Gather global variables in fiber model
        gf = []
        gt = []
        for label in self._global:
            v = self._modelf.binding(label)
            if v is not None:
                gf.append(v.qname())
            v = self._modelt.binding(label)
            if v is not None:
                gt.append(v.qname())

        # Parse logf argument
        logf = myokit.prepare_log(logf,
                                  self._modelf,
                                  dims=self._ncellsf,
                                  global_vars=gf,
                                  if_empty=myokit.LOG_STATE + myokit.LOG_BOUND,
                                  allowed_classes=myokit.LOG_STATE +
                                  myokit.LOG_BOUND + myokit.LOG_INTER,
                                  precision=self._precision)

        # Parse logt argument
        logt = myokit.prepare_log(logt,
                                  self._modelt,
                                  dims=self._ncellst,
                                  global_vars=gt,
                                  if_empty=myokit.LOG_STATE + myokit.LOG_BOUND,
                                  allowed_classes=myokit.LOG_STATE +
                                  myokit.LOG_BOUND + myokit.LOG_INTER,
                                  precision=self._precision)

        # Create list of intermediary fiber variables that need to be logged
        inter_logf = []
        vars_checked = set()
        for var in logf.keys():
            var = myokit.split_key(var)[1]
            if var in vars_checked:
                continue
            vars_checked.add(var)
            var = self._modelf.get(var)
            if var.is_intermediary() and not var.is_bound():
                inter_logf.append(var)

        # Create list of intermediary tissue variables that need to be logged
        inter_logt = []
        vars_checked = set()
        for var in logt.keys():
            var = myokit.split_key(var)[1]
            if var in vars_checked:
                continue
            vars_checked.add(var)
            var = self._modelt.get(var)
            if var.is_intermediary() and not var.is_bound():
                inter_logt.append(var)

        # Get preferred platform/device combo from configuration file
        platform, device = myokit.OpenCL.load_selection_bytes()

        # Generate kernels
        kernel_file = os.path.join(myokit.DIR_CFUNC, KERNEL_FILE)
        args = {
            'precision': self._precision,
            'native_math': self._native_math,
            'diffusion': True,
            'fields': [],
            'rl_states': {},
        }
        args['model'] = self._modelf
        args['vmvar'] = self._vmf
        args['bound_variables'] = self._bound_variablesf
        args['inter_log'] = inter_logf
        args['paced_cells'] = self._paced_cells
        if myokit.DEBUG:
            print('-' * 79)
            print(
                self._code(kernel_file,
                           args,
                           line_numbers=myokit.DEBUG_LINE_NUMBERS))
        else:
            kernelf = self._export(kernel_file, args)
        args['model'] = self._modelt
        args['vmvar'] = self._vmt
        args['bound_variables'] = self._bound_variablest
        args['inter_log'] = inter_logt
        args['paced_cells'] = []
        if myokit.DEBUG:
            print('-' * 79)
            print(
                self._code(kernel_file,
                           args,
                           line_numbers=myokit.DEBUG_LINE_NUMBERS))
            import sys
            sys.exit(1)
        else:
            kernelt = self._export(kernel_file, args)

        # Logging period (0 = disabled)
        log_interval = 1e-9 if log_interval is None else float(log_interval)
        if log_interval <= 0:
            log_interval = 1e-9

        # Get progress indication function (if any)
        if progress is None:
            progress = myokit._Simulation_progress
        if progress:
            if not isinstance(progress, myokit.ProgressReporter):
                raise ValueError(
                    'The argument "progress" must be either a subclass of'
                    ' myokit.ProgressReporter or None.')

        # Run simulation
        if duration > 0:
            # Initialize
            state_inf = self._statef
            state_int = self._statet
            state_outf = list(state_inf)
            state_outt = list(state_int)
            self._sim.sim_init(
                platform,
                device,
                kernelf,
                kernelt,
                self._ncellsf[0],
                self._ncellsf[1],
                self._ncellst[0],
                self._ncellst[1],
                self._vmf.indice(),
                self._vmt.indice(),
                self._gf[0],
                self._gf[1],
                self._gt[0],
                self._gt[1],
                self._gft,
                self._cfx,
                self._ctx,
                self._cty,
                tmin,
                tmax,
                self._step_size,
                state_inf,
                state_int,
                state_outf,
                state_outt,
                self._protocol,
                logf,
                logt,
                log_interval,
                [x.qname().encode('ascii') for x in inter_logf],
                [x.qname().encode('ascii') for x in inter_logt],
            )
            try:
                t = tmin
                if progress:
                    # Loop with feedback
                    with progress.job(msg):
                        r = 1.0 / duration if duration != 0 else 1
                        while t < tmax:
                            t = self._sim.sim_step()
                            if t < tmin:
                                # A numerical error has occurred.
                                break
                            if not progress.update(min((t - tmin) * r, 1)):
                                raise myokit.SimulationCancelledError()
                else:
                    # Loop without feedback
                    while t < tmax:
                        t = self._sim.sim_step()
                        if t < tmin:
                            # A numerical error has occurred.
                            break
            finally:
                # Clean even after KeyboardInterrupt or other Exception
                self._sim.sim_clean()
            # Update states
            self._statef = state_outf
            self._statet = state_outt

        # Check for NaN's, print error output
        if report_nan and (logf.has_nan() or logt.has_nan()):
            txt = ['Numerical error found in simulation logs.']
            try:
                # NaN encountered, show how it happened
                part, time, icell, var, value, states, bound = self.find_nan(
                    logf, logt)
                model = self._modelt if part == 'tissue' else self._modelf
                txt.append('Encountered numerical error in ' + part +
                           ' simulation at t=' + str(time) + ' in cell (' +
                           ','.join([str(x) for x in icell]) + ') when ' +
                           var + '=' + str(value) + '.')
                n_states = len(states)
                txt.append('Obtained ' + str(n_states) + ' previous state(s).')
                if n_states > 1:
                    txt.append('State before:')
                    txt.append(model.format_state(states[1]))
                txt.append('State during:')
                txt.append(model.format_state(states[0]))
                if n_states > 1:
                    txt.append('Evaluating derivatives at state before...')
                    try:
                        derivs = model.eval_state_derivatives(
                            states[1], precision=self._precision)
                        txt.append(
                            model.format_state_derivatives(states[1], derivs))
                    except myokit.NumericalError as ee:
                        txt.append(str(ee))
            except myokit.FindNanError as e:
                txt.append(
                    'Unable to pinpoint source of NaN, an error occurred:')
                txt.append(str(e))
            raise myokit.SimulationError('\n'.join(txt))

        # Return logs
        return logf, logt
Exemple #2
0
    def _run(self, duration, log, log_interval, report_nan, progress, msg):
        # Simulation times
        if duration < 0:
            raise Exception('Simulation time can\'t be negative.')
        tmin = self._time
        tmax = tmin + duration

        # Gather global variables in model
        g = []
        for label in self._global:
            v = self._model.binding(label)
            if v is not None:
                g.append(v.qname())

        # Parse log argument
        log = myokit.prepare_log(log,
                                 self._model,
                                 dims=self._dims,
                                 global_vars=g,
                                 if_empty=myokit.LOG_STATE + myokit.LOG_BOUND,
                                 allowed_classes=myokit.LOG_STATE +
                                 myokit.LOG_INTER + myokit.LOG_BOUND,
                                 precision=self._precision)

        # Create list of intermediary variables that need to be logged
        inter_log = []
        vars_checked = set()
        for var in log.iterkeys():
            var = myokit.split_key(var)[1]
            if var in vars_checked:
                continue
            vars_checked.add(var)
            var = self._model.get(var)
            if var.is_intermediary() and not var.is_bound():
                inter_log.append(var)

        # Get preferred platform/device combo from configuration file
        platform, device = myokit.OpenCL.load_selection()

        # Compile template into string with kernel code
        kernel_file = os.path.join(myokit.DIR_CFUNC, KERNEL_FILE)
        args = {
            'model': self._model,
            'precision': self._precision,
            'native_math': self._native_math,
            'bound_variables': self._bound_variables,
            'inter_log': inter_log,
            'diffusion': self._diffusion_enabled,
            'fields': self._fields.keys(),
            'paced_cells': self._paced_cells,
        }
        if myokit.DEBUG:
            print('-' * 79)
            print(
                self._code(kernel_file,
                           args,
                           line_numbers=myokit.DEBUG_LINE_NUMBERS))
            import sys
            sys.exit(1)
        kernel = self._export(kernel_file, args)

        # Logging period (0 = disabled)
        log_interval = 1e-9 if log_interval is None else float(log_interval)
        if log_interval <= 0:
            log_interval = 1e-9

        # Create field values vector
        n = len(self._fields) * self._nx * self._ny
        if n:
            field_data = self._fields.itervalues()
            field_data = [np.array(x, copy=False) for x in field_data]
            field_data = np.vstack(field_data)
            field_data = list(field_data.reshape(n, order='F'))
        else:
            field_data = []

        # Get progress indication function (if any)
        if progress is None:
            progress = myokit._Simulation_progress
        if progress:
            if not isinstance(progress, myokit.ProgressReporter):
                raise ValueError(
                    'The argument "progress" must be either a subclass of'
                    ' myokit.ProgressReporter or None.')

        # Run simulation
        arithmetic_error = False
        if duration > 0:
            # Initialize
            state_in = self._state
            state_out = list(state_in)
            self._sim.sim_init(
                platform,
                device,
                kernel,
                self._nx,
                self._ny,
                self._diffusion_enabled,
                self._gx,
                self._gy,
                self._connections,
                tmin,
                tmax,
                self._step_size,
                state_in,
                state_out,
                self._protocol,
                log,
                log_interval,
                [x.qname() for x in inter_log],
                field_data,
            )
            t = tmin
            try:
                if progress:
                    # Loop with feedback
                    with progress.job(msg):
                        r = 1.0 / duration if duration != 0 else 1
                        while t < tmax:
                            t = self._sim.sim_step()
                            if not progress.update(min((t - tmin) * r, 1)):
                                raise myokit.SimulationCancelledError()
                else:
                    # Loop without feedback
                    while t < tmax:
                        t = self._sim.sim_step()
            except ArithmeticError:
                arithmetic_error = True
            finally:
                # Clean even after KeyboardInterrupt or other Exception
                self._sim.sim_clean()
            # Update state
            self._state = state_out

        # Check for NaN
        if report_nan and (arithmetic_error or log.has_nan()):
            txt = ['Numerical error found in simulation logs.']
            try:
                # NaN encountered, show how it happened
                time, icell, var, value, states, bound = self.find_nan(log)
                txt.append('Encountered numerical error at t=' + str(time) +
                           ' in cell (' + ','.join([str(x) for x in icell]) +
                           ') when ' + var + '=' + str(value) + '.')
                n_states = len(states)
                txt.append('Obtained ' + str(n_states) + ' previous state(s).')
                if n_states > 1:
                    txt.append('State before:')
                    txt.append(self._model.format_state(states[1]))
                txt.append('State during:')
                txt.append(self._model.format_state(states[0]))
                if n_states > 1:
                    txt.append('Evaluating derivatives at state before...')
                    try:
                        derivs = self._model.eval_state_derivatives(
                            states[1], precision=self._precision)
                        txt.append(
                            self._model.format_state_derivs(states[1], derivs))
                    except myokit.NumericalError as ee:
                        txt.append(ee.message)
            except myokit.FindNanError as e:
                txt.append(
                    'Unable to pinpoint source of NaN, an error occurred:')
                txt.append(e.message)
            raise myokit.SimulationError('\n'.join(txt))

        # Return log
        return log