Exemple #1
0
    def __init__(
            self,
            isExtract=True,
            root_dir="C:\\Users\\DELL\\Projects\\VHR_CD\\image-v2-timeseries\\newest",
            filename="4Band_Subtracted_20040514_20050427"):
        """
        Args:
            root_dir (string): the path of the file
            file_name (string): the name of the picture
            isExtract (boolean): use the mask to extract changed area
        """
        self.isExtract = isExtract
        self.root_dir = root_dir
        self.file_name = filename
        self.dataset = oi.open_tiff(root_dir, filename)
        self.H = self.dataset[1]
        self.W = self.dataset[2]
        self.n_bands = self.dataset[3]
        self.npdataset = art.tif2vec(
            self.dataset[0])  #flatten and transform the array

        if self.isExtract:
            # extract out the changed area
            self.select_path = "C:\\Users\\DELL\\Projects\\VHR_CD\\image-v2-timeseries\\EXTRACT"
            self.select_img = "SOMOCLU_20_20_HDBSCAN_cl_2_2004_2005_min_cluster_size_4_alg_best_"
            self.simg = oi.open_tiff(self.select_path, self.select_img)
            self.select = self.simg[0]  #(2720000)
            self.changePos = DataProcess.selectArea(self.select,
                                                    self.n_bands,
                                                    -1,
                                                    isStack=True)
            self.ns_changePos = DataProcess.selectArea(self.select,
                                                       self.n_bands,
                                                       -1,
                                                       isStack=False)
            self.ns_nonChangePos = DataProcess.selectArea(self.select,
                                                          self.n_bands,
                                                          0,
                                                          isStack=False)

            self.npdataset = self.npdataset[self.changePos].reshape(
                -1, self.n_bands)

        # normalization
        self.nmax = self.npdataset.max(axis=0)
        self.nmin = self.npdataset.min(axis=0)
        self.norm_data = (self.npdataset - self.nmin) / (self.nmax - self.nmin)

        # TODO:don't know what's for yet, add only to be compatible to TensorDataset
        self.target_data = np.zeros_like(self.norm_data)

        #clear the memory
        # self.simg=None
        self.dataset = None
Exemple #2
0
def extract_compareClustering(clusterClass):
    # Get data, n_bands=4
    norm_img_path = "C:\\Users\\DELL\\Projects\\MLS_cluster\\image-v2-timeseries\\newest"
    img = "4Band_Subtracted_20040514_20050427"

    dataset = oi.open_tiff(norm_img_path, img)
    H = dataset[1]
    W = dataset[2]
    n_bands = dataset[3]
    org_data = art.tif2vec(dataset[0])  #NOTE: this step is really important

    select_path = "C:\\Users\\DELL\\Projects\\MLS_cluster\\image-v2-timeseries\\EXTRACT"
    select_img = "SOMOCLU_20_20_HDBSCAN_cl_2_2004_2005_min_cluster_size_4_alg_best_"
    simg = oi.open_tiff(select_path, select_img)
    select = simg[0]  #(2720000)

    changePos = DataProcess.selectArea(select, n_bands, -1, isStack=True)
    ns_changePos = DataProcess.selectArea(select, n_bands, -1, isStack=False)
    ns_nonChangePos = DataProcess.selectArea(select, n_bands, 0, isStack=False)

    X_train = org_data[changePos].reshape(-1, n_bands)

    result = np.zeros_like(select.reshape(-1, 1))

    for cls_name, cls_class in clusterClass.items():
        print("running", cls_name, "...")
        t0 = time.clock()
        cls_class.fit(X_train)
        usingTime = time.clock() - t0

        # combine the result
        result[ns_changePos] = cls_class.labels_
        result[ns_nonChangePos] = np.max(cls_class.labels_) + 1

        evaluation = silhouette_score(X=org_data,
                                      labels=result,
                                      metric='euclidean',
                                      sample_size=10000)

        save_path = "C:\\Users\\DELL\\Projects\\MLS_cluster\\image-v2-timeseries\\sklearn_clustering\\compare"
        DataProcess.visualize_class(
            result.reshape(H, W),
            save_path + '\\' + cls_name + "_change_area_class")

        # save using time
        print("save the information to txt file...")
        with open(
                save_path + '/' +
                "Outlier Detection Algorithms Running Time.txt", 'a') as f:
            f.write("detetion algorithm: " + cls_name + "\nsilhouette_score:" +
                    str(evaluation) + "\ndetection using time: " +
                    str(usingTime))
            f.write("\n----------------------------------------------\n")
Exemple #3
0
    def __init__(
        self,
        filename,
        isExtract=True,
        root_dir="C:\\Users\\DELL\\Projects\\VHR_CD\\image-v2-timeseries\\Montpellier_SPOT5_Clipped_relatively_normalized_03_02_mask1"
    ):
        """
        Args:
            root_dir (string): the path of the file
            file_name (string): the name of the picture
        """
        self.root_dir = root_dir
        self.file_name = filename
        self.dataset = oi.open_tiff(root_dir, filename)
        self.H = self.dataset[1]  #1700
        self.W = self.dataset[2]  #1600
        self.n_bands = self.dataset[3]
        self.geo = self.dataset[4]
        self.prj = self.dataset[5]

        self.norm_data = self.normalization()
        # TODO:don't know what's for yet, add only to be compatible to TensorDataset
        self.target_data = np.zeros_like(self.norm_data)

        #clear the memory
        self.dataset = None
Exemple #4
0
def RunPyodOutlier(classifiers, outlier_save_path, isExtract=True):
    # Get data, n_bands=4
    norm_img_path = "C:\\Users\\DELL\\Projects\\MLS_cluster\\image-v2-timeseries\\newest"
    img = "4Band_Subtracted_20040514_20050427"

    dataset = oi.open_tiff(norm_img_path, img)
    H = dataset[1]
    W = dataset[2]
    n_bands = dataset[3]
    org_data = art.tif2vec(dataset[0])  #NOTE: this step is really important

    #NOTE: Normalize the scale of the orignialdata
    org_data = org_data / org_data.max(axis=0)

    #TODO: normalize the data?

    if isExtract:
        # extract out the changed area
        select_path = "C:\\Users\\DELL\\Projects\\MLS_cluster\\image-v2-timeseries\\EXTRACT"
        select_img = "SOMOCLU_20_20_HDBSCAN_cl_2_2004_2005_min_cluster_size_4_alg_best_"
        simg = oi.open_tiff(select_path, select_img)
        select = simg[0]  #(2720000)

        changePos = DataProcess.selectArea(select, n_bands, -1, isStack=True)
        ns_changePos = DataProcess.selectArea(select,
                                              n_bands,
                                              -1,
                                              isStack=False)
        ns_nonChangePos = DataProcess.selectArea(select,
                                                 n_bands,
                                                 0,
                                                 isStack=False)

        X_train = org_data[changePos].reshape(-1, n_bands)
        print("shape of original data: ", org_data.shape)
        print("shape of extracted data: ", X_train.shape)
        # to save the final result
        outlier_result = np.zeros_like(select.reshape(-1, 1))
        score_result = np.empty_like(select.reshape(-1, 1))
    else:
        X_train = org_data.reshape(-1, n_bands)
        print("shape of training data: ", X_train.shape)

    for clf_name, clf in classifiers.items():
        if not isExtract:
            clf_name = "no_extract_" + clf_name

        print("running " + clf_name + "...")
        t0 = time.clock()
        clf.fit(X_train)
        usingTime = time.clock() - t0
        # get the prediction labels and outlier scores of the training data
        y_train_pred = clf.labels_  # binary labels (0: inliers, 1: outliers)
        y_train_scores = clf.decision_scores_  # raw outlier scores

        if isExtract:
            # combine the extraction non-changed label&&scores and the algorithm result
            outlier_result[ns_changePos] = y_train_pred
            outlier_result[ns_nonChangePos] = 0
            score_result[ns_changePos] = DataProcess.scaleNormalize(
                y_train_scores, (0, 500)).reshape(-1, )
            score_result[ns_nonChangePos] = 0
            #save the outlier detection result as .tif and .shp file
        else:
            # combine the extraction non-changed label and the algorithm result
            outlier_result = y_train_pred
            score_result = DataProcess.scaleNormalize(y_train_scores,
                                                      (0, 500)).reshape(-1, )

        print("the scale of the y_train_score is:", y_train_scores.min(),
              y_train_scores.max())
        print("the scale of the score_result is:", score_result.min(),
              score_result.max())

        DataProcess.int_to_csv(outlier_save_path, img, outlier_result,
                               clf_name + "_outliers")
        GeoProcess.getSHP(norm_img_path, img, outlier_save_path,
                          clf_name + "_outliers", outlier_result)

        #save the outlier scores as heatmap
        DataProcess.saveHeatMap(score_result.reshape(H, W),
                                outlier_save_path + "\\" + clf_name)

        print("save the information to txt file...")
        with open(
                outlier_save_path + '/' +
                "Outlier Detection Algorithms Running Time.txt", 'a') as f:
            f.write("detetion algorithm: " + clf_name +
                    "\ndetection using time: " + str(usingTime))
            f.write("\n----------------------------------------------\n")