Exemple #1
0
 def anomaly(self,scores):
     if isExtract:
         self.score_result=np.empty_like(self.select.reshape(-1,1))
         # scale the scores
         self.score_result[self.ns_changePos]=DataProcess.scaleNormalize(scores,(0,500)).reshape(-1,)
         self.score_result[self.ns_nonChangePos]=0
     else:
         self.score_result=DataProcess.scaleNormalize(scores,(0,500)).reshape(-1,)
     # give labels
     self.outlier_result=highRank.getOutliers(self.score_result,99)
     # generate picture
     GeoProcess.getSHP(img_path=self.root_dir,img_name=self.file_name,
         save_path="C:\\Users\\DELL\\Projects\\VHR_CD\\repository\\code-v2",extend_name="VAE_noEXT_",result_array=self.outlier_result)
Exemple #2
0
def RunPyodOutlier(classifiers, outlier_save_path, isExtract=True):
    # Get data, n_bands=4
    norm_img_path = "C:\\Users\\DELL\\Projects\\MLS_cluster\\image-v2-timeseries\\newest"
    img = "4Band_Subtracted_20040514_20050427"

    dataset = oi.open_tiff(norm_img_path, img)
    H = dataset[1]
    W = dataset[2]
    n_bands = dataset[3]
    org_data = art.tif2vec(dataset[0])  #NOTE: this step is really important

    #NOTE: Normalize the scale of the orignialdata
    org_data = org_data / org_data.max(axis=0)

    #TODO: normalize the data?

    if isExtract:
        # extract out the changed area
        select_path = "C:\\Users\\DELL\\Projects\\MLS_cluster\\image-v2-timeseries\\EXTRACT"
        select_img = "SOMOCLU_20_20_HDBSCAN_cl_2_2004_2005_min_cluster_size_4_alg_best_"
        simg = oi.open_tiff(select_path, select_img)
        select = simg[0]  #(2720000)

        changePos = DataProcess.selectArea(select, n_bands, -1, isStack=True)
        ns_changePos = DataProcess.selectArea(select,
                                              n_bands,
                                              -1,
                                              isStack=False)
        ns_nonChangePos = DataProcess.selectArea(select,
                                                 n_bands,
                                                 0,
                                                 isStack=False)

        X_train = org_data[changePos].reshape(-1, n_bands)
        print("shape of original data: ", org_data.shape)
        print("shape of extracted data: ", X_train.shape)
        # to save the final result
        outlier_result = np.zeros_like(select.reshape(-1, 1))
        score_result = np.empty_like(select.reshape(-1, 1))
    else:
        X_train = org_data.reshape(-1, n_bands)
        print("shape of training data: ", X_train.shape)

    for clf_name, clf in classifiers.items():
        if not isExtract:
            clf_name = "no_extract_" + clf_name

        print("running " + clf_name + "...")
        t0 = time.clock()
        clf.fit(X_train)
        usingTime = time.clock() - t0
        # get the prediction labels and outlier scores of the training data
        y_train_pred = clf.labels_  # binary labels (0: inliers, 1: outliers)
        y_train_scores = clf.decision_scores_  # raw outlier scores

        if isExtract:
            # combine the extraction non-changed label&&scores and the algorithm result
            outlier_result[ns_changePos] = y_train_pred
            outlier_result[ns_nonChangePos] = 0
            score_result[ns_changePos] = DataProcess.scaleNormalize(
                y_train_scores, (0, 500)).reshape(-1, )
            score_result[ns_nonChangePos] = 0
            #save the outlier detection result as .tif and .shp file
        else:
            # combine the extraction non-changed label and the algorithm result
            outlier_result = y_train_pred
            score_result = DataProcess.scaleNormalize(y_train_scores,
                                                      (0, 500)).reshape(-1, )

        print("the scale of the y_train_score is:", y_train_scores.min(),
              y_train_scores.max())
        print("the scale of the score_result is:", score_result.min(),
              score_result.max())

        DataProcess.int_to_csv(outlier_save_path, img, outlier_result,
                               clf_name + "_outliers")
        GeoProcess.getSHP(norm_img_path, img, outlier_save_path,
                          clf_name + "_outliers", outlier_result)

        #save the outlier scores as heatmap
        DataProcess.saveHeatMap(score_result.reshape(H, W),
                                outlier_save_path + "\\" + clf_name)

        print("save the information to txt file...")
        with open(
                outlier_save_path + '/' +
                "Outlier Detection Algorithms Running Time.txt", 'a') as f:
            f.write("detetion algorithm: " + clf_name +
                    "\ndetection using time: " + str(usingTime))
            f.write("\n----------------------------------------------\n")