def show_bias(self): if len(self.weights) is 1: mp = myplot.MyPlot() mp.set_labels('Step', 'Bias') mp.show_list(self.biases) else: print('Cannot show the bias! Call print_bias mehtod.')
def show_weight(self): print('shape=', self.weights) if len(self.weights[0]) is 1: mp = myplot.MyPlot() mp.set_labels('Step', 'Weight') mp.show_list(self.weights) else: print('Cannot show the weight! Call print_weight method.')
# Get a image randomly and classify r = random.randint(0, mnist.test.num_examples - 1) print("Label: ", sess.run(tf.argmax(mnist.test.labels[r:r + 1], 1))) print( "Prediction: ", sess.run(tf.argmax(logits, 1), feed_dict={X: mnist.test.images[r:r + 1]})) import matplotlib.pyplot as plt plt.imshow(mnist.test.images[r:r + 1].reshape(28, 28), cmap='Greys', interpolation='nearest') plt.show() import myplot guy = myplot.MyPlot() guy.set_labels('Epoch', 'Error') guy.show_list(error_list) ''' Epoch: 0001 cost = 141.207671860 Epoch: 0002 cost = 38.788445864 Epoch: 0003 cost = 23.977515479 Epoch: 0004 cost = 16.315132428 Epoch: 0005 cost = 11.702554882 Epoch: 0006 cost = 8.573139748 Epoch: 0007 cost = 6.370995680 Epoch: 0008 cost = 4.537178684 Epoch: 0009 cost = 3.216900532 Epoch: 0010 cost = 2.329708954 Epoch: 0011 cost = 1.715552875 Epoch: 0012 cost = 1.189857912
def show_error(self): mp = myplot.MyPlot() mp.set_labels('Step', 'Error') mp.show_list(self.costs)
def show_bias(self): mp = myplot.MyPlot() mp.set_labels('Step', 'Bias') mp.show_list(self.biases)
def show_weight(self): mp = myplot.MyPlot() mp.set_labels('Step', 'Weight') mp.show_list(self.weights)
# sampling rate Ts = 1.0 / Fs # sampling interval t = np.arange(0, 1, Ts) # time vector freq1 = 5 # frequency of the signal freq2 = 10 # frequency of the signal freq3 = 20 wave1 = np.sin(2 * np.pi * freq1 * t) wave2 = np.sin(2 * np.pi * freq2 * t) wave3 = np.sin(2 * np.pi * freq3 * t) signal = wave1 + wave2 + wave3 mplot1 = myplot.MyPlot() mplot1.crossplot(t, signal) n = len(signal) # length of the signal k = np.arange(n) T = n / Fs frq = k / T # two sides frequency range frq = frq[range(n // 2)] # one side frequency range fftsignal = np.fft.fft(signal) / n # fft computing and normalization fftsignal = fftsignal[range(n // 2)] mplot2 = myplot.MyPlot() mplot2.crossplot(frq, abs(fftsignal))