def setUp(self) -> None: self.env = Environment() self.n = self.env.add_local(Var('n'), int_rprimitive) self.m = self.env.add_local(Var('m'), int_rprimitive) self.k = self.env.add_local(Var('k'), int_rprimitive) self.l = self.env.add_local(Var('l'), list_rprimitive) # noqa self.ll = self.env.add_local(Var('ll'), list_rprimitive) self.o = self.env.add_local(Var('o'), object_rprimitive) self.o2 = self.env.add_local(Var('o2'), object_rprimitive) self.d = self.env.add_local(Var('d'), dict_rprimitive) self.b = self.env.add_local(Var('b'), bool_rprimitive) self.t = self.env.add_local(Var('t'), RTuple([int_rprimitive, bool_rprimitive])) self.tt = self.env.add_local( Var('tt'), RTuple( [RTuple([int_rprimitive, bool_rprimitive]), bool_rprimitive])) ir = ClassIR('A', 'mod') ir.attributes = OrderedDict([('x', bool_rprimitive), ('y', int_rprimitive)]) compute_vtable(ir) ir.mro = [ir] self.r = self.env.add_local(Var('r'), RInstance(ir)) self.context = EmitterContext(NameGenerator([['mod']])) self.emitter = Emitter(self.context, self.env) self.declarations = Emitter(self.context, self.env) self.visitor = FunctionEmitterVisitor(self.emitter, self.declarations, 'prog.py', 'prog')
def gen_glue_ne_method(self, cls: ClassIR, line: int) -> FuncIR: """Generate a __ne__ method from a __eq__ method. """ self.builder.enter() rt_args = (RuntimeArg("self", RInstance(cls)), RuntimeArg("rhs", object_rprimitive)) # The environment operates on Vars, so we make some up fake_vars = [(Var(arg.name), arg.type) for arg in rt_args] args = [ self.builder.read( self.builder.environment.add_local_reg( var, type, is_arg=True ), line ) for var, type in fake_vars ] # type: List[Value] self.builder.ret_types[-1] = object_rprimitive # If __eq__ returns NotImplemented, then __ne__ should also not_implemented_block, regular_block = BasicBlock(), BasicBlock() eqval = self.add(MethodCall(args[0], '__eq__', [args[1]], line)) not_implemented = self.primitive_op(not_implemented_op, [], line) self.add(Branch( self.builder.binary_op(eqval, not_implemented, 'is', line), not_implemented_block, regular_block, Branch.BOOL_EXPR)) self.builder.activate_block(regular_block) retval = self.builder.coerce( self.builder.unary_op(eqval, 'not', line), object_rprimitive, line ) self.add(Return(retval)) self.builder.activate_block(not_implemented_block) self.add(Return(not_implemented)) blocks, env, ret_type, _ = self.builder.leave() return FuncIR( FuncDecl('__ne__', cls.name, self.module_name, FuncSignature(rt_args, ret_type)), blocks, env)
def generate_attr_defaults(self, cdef: ClassDef) -> None: """Generate an initialization method for default attr values (from class vars)""" cls = self.mapper.type_to_ir[cdef.info] if cls.builtin_base: return # Pull out all assignments in classes in the mro so we can initialize them # TODO: Support nested statements default_assignments = [] for info in reversed(cdef.info.mro): if info not in self.mapper.type_to_ir: continue for stmt in info.defn.defs.body: if (isinstance(stmt, AssignmentStmt) and isinstance(stmt.lvalues[0], NameExpr) and not is_class_var(stmt.lvalues[0]) and not isinstance(stmt.rvalue, TempNode)): if stmt.lvalues[0].name == '__slots__': continue # Skip type annotated assignments in dataclasses if is_dataclass(cdef) and stmt.type: continue default_assignments.append(stmt) if not default_assignments: return self.builder.enter() self.builder.ret_types[-1] = bool_rprimitive rt_args = (RuntimeArg(SELF_NAME, RInstance(cls)),) self_var = self.builder.read(add_self_to_env(self.builder.environment, cls), -1) for stmt in default_assignments: lvalue = stmt.lvalues[0] assert isinstance(lvalue, NameExpr) if not stmt.is_final_def and not is_constant(stmt.rvalue): self.builder.warning('Unsupported default attribute value', stmt.rvalue.line) # If the attribute is initialized to None and type isn't optional, # don't initialize it to anything. attr_type = cls.attr_type(lvalue.name) if isinstance(stmt.rvalue, RefExpr) and stmt.rvalue.fullname == 'builtins.None': if (not is_optional_type(attr_type) and not is_object_rprimitive(attr_type) and not is_none_rprimitive(attr_type)): continue val = self.builder.coerce(self.accept(stmt.rvalue), attr_type, stmt.line) self.add(SetAttr(self_var, lvalue.name, val, -1)) self.add(Return(self.primitive_op(true_op, [], -1))) blocks, env, ret_type, _ = self.builder.leave() ir = FuncIR( FuncDecl('__mypyc_defaults_setup', cls.name, self.module_name, FuncSignature(rt_args, ret_type)), blocks, env) self.builder.functions.append(ir) cls.methods[ir.name] = ir
def setUp(self) -> None: self.inst_a = RInstance(ClassIR('A', '__main__')) self.inst_b = RInstance(ClassIR('B', '__main__'))
def add_self_to_env(environment: Environment, cls: ClassIR) -> AssignmentTargetRegister: return environment.add_local_reg( Var(SELF_NAME), RInstance(cls), is_arg=True )
def prepare_class_def(path: str, module_name: str, cdef: ClassDef, errors: Errors, mapper: Mapper) -> None: ir = mapper.type_to_ir[cdef.info] info = cdef.info attrs = get_mypyc_attrs(cdef) if attrs.get("allow_interpreted_subclasses") is True: ir.allow_interpreted_subclasses = True # We sort the table for determinism here on Python 3.5 for name, node in sorted(info.names.items()): # Currently all plugin generated methods are dummies and not included. if node.plugin_generated: continue if isinstance(node.node, Var): assert node.node.type, "Class member %s missing type" % name if not node.node.is_classvar and name != '__slots__': ir.attributes[name] = mapper.type_to_rtype(node.node.type) elif isinstance(node.node, (FuncDef, Decorator)): prepare_method_def(ir, module_name, cdef, mapper, node.node) elif isinstance(node.node, OverloadedFuncDef): # Handle case for property with both a getter and a setter if node.node.is_property: if is_valid_multipart_property_def(node.node): for item in node.node.items: prepare_method_def(ir, module_name, cdef, mapper, item) else: errors.error("Unsupported property decorator semantics", path, cdef.line) # Handle case for regular function overload else: assert node.node.impl prepare_method_def(ir, module_name, cdef, mapper, node.node.impl) # Check for subclassing from builtin types for cls in info.mro: # Special case exceptions and dicts # XXX: How do we handle *other* things?? if cls.fullname == 'builtins.BaseException': ir.builtin_base = 'PyBaseExceptionObject' elif cls.fullname == 'builtins.dict': ir.builtin_base = 'PyDictObject' elif cls.fullname.startswith('builtins.'): if not can_subclass_builtin(cls.fullname): # Note that if we try to subclass a C extension class that # isn't in builtins, bad things will happen and we won't # catch it here! But this should catch a lot of the most # common pitfalls. errors.error( "Inheriting from most builtin types is unimplemented", path, cdef.line) if ir.builtin_base: ir.attributes.clear() # Set up a constructor decl init_node = cdef.info['__init__'].node if not ir.is_trait and not ir.builtin_base and isinstance( init_node, FuncDef): init_sig = mapper.fdef_to_sig(init_node) defining_ir = mapper.type_to_ir.get(init_node.info) # If there is a nontrivial __init__ that wasn't defined in an # extension class, we need to make the constructor take *args, # **kwargs so it can call tp_init. if ((defining_ir is None or not defining_ir.is_ext_class or cdef.info['__init__'].plugin_generated) and init_node.info.fullname != 'builtins.object'): init_sig = FuncSignature([ init_sig.args[0], RuntimeArg("args", tuple_rprimitive, ARG_STAR), RuntimeArg("kwargs", dict_rprimitive, ARG_STAR2) ], init_sig.ret_type) ctor_sig = FuncSignature(init_sig.args[1:], RInstance(ir)) ir.ctor = FuncDecl(cdef.name, None, module_name, ctor_sig) mapper.func_to_decl[cdef.info] = ir.ctor # Set up the parent class bases = [ mapper.type_to_ir[base.type] for base in info.bases if base.type in mapper.type_to_ir ] if not all(c.is_trait for c in bases[1:]): errors.error("Non-trait bases must appear first in parent list", path, cdef.line) ir.traits = [c for c in bases if c.is_trait] mro = [] base_mro = [] for cls in info.mro: if cls not in mapper.type_to_ir: if cls.fullname != 'builtins.object': ir.inherits_python = True continue base_ir = mapper.type_to_ir[cls] if not base_ir.is_trait: base_mro.append(base_ir) mro.append(base_ir) if cls.defn.removed_base_type_exprs or not base_ir.is_ext_class: ir.inherits_python = True base_idx = 1 if not ir.is_trait else 0 if len(base_mro) > base_idx: ir.base = base_mro[base_idx] ir.mro = mro ir.base_mro = base_mro for base in bases: if base.children is not None: base.children.append(ir) if is_dataclass(cdef): ir.is_augmented = True
def type_to_rtype(self, typ: Optional[Type]) -> RType: if typ is None: return object_rprimitive typ = get_proper_type(typ) if isinstance(typ, Instance): if typ.type.fullname == 'builtins.int': return int_rprimitive elif typ.type.fullname == 'builtins.float': return float_rprimitive elif typ.type.fullname == 'builtins.str': return str_rprimitive elif typ.type.fullname == 'builtins.bool': return bool_rprimitive elif typ.type.fullname == 'builtins.list': return list_rprimitive # Dict subclasses are at least somewhat common and we # specifically support them, so make sure that dict operations # get optimized on them. elif any(cls.fullname == 'builtins.dict' for cls in typ.type.mro): return dict_rprimitive elif typ.type.fullname == 'builtins.set': return set_rprimitive elif typ.type.fullname == 'builtins.tuple': return tuple_rprimitive # Varying-length tuple elif typ.type in self.type_to_ir: return RInstance(self.type_to_ir[typ.type]) else: return object_rprimitive elif isinstance(typ, TupleType): # Use our unboxed tuples for raw tuples but fall back to # being boxed for NamedTuple. if typ.partial_fallback.type.fullname == 'builtins.tuple': return RTuple([self.type_to_rtype(t) for t in typ.items]) else: return tuple_rprimitive elif isinstance(typ, CallableType): return object_rprimitive elif isinstance(typ, NoneTyp): return none_rprimitive elif isinstance(typ, UnionType): return RUnion([self.type_to_rtype(item) for item in typ.items]) elif isinstance(typ, AnyType): return object_rprimitive elif isinstance(typ, TypeType): return object_rprimitive elif isinstance(typ, TypeVarType): # Erase type variable to upper bound. # TODO: Erase to union if object has value restriction? return self.type_to_rtype(typ.upper_bound) elif isinstance(typ, PartialType): assert typ.var.type is not None return self.type_to_rtype(typ.var.type) elif isinstance(typ, Overloaded): return object_rprimitive elif isinstance(typ, TypedDictType): return dict_rprimitive elif isinstance(typ, LiteralType): return self.type_to_rtype(typ.fallback) elif isinstance(typ, (UninhabitedType, UnboundType)): # Sure, whatever! return object_rprimitive # I think we've covered everything that is supposed to # actually show up, so anything else is a bug somewhere. assert False, 'unexpected type %s' % type(typ)