Exemple #1
0
def callback(rightfront_sub, leftfront_sub, value, angle):
    msg = vect_msg()
    #TODO define here a behavior according to the contact value
    # angle = (forceL - forceR) * 180/1023
    # force = (forceL+forceR)/2
    msg.value = value
    msg.angle = angle

    if not rightfront_sub.states:
        pass
    else:
        rightfront_force = rightfront_sub.states[0].total_wrench.force.x
        rospy.loginfo('Ive been toched from the right F=%s\n',
                      rightfront_force)
        # Fill vector message
        angle = -90
        value = -1
        right_now = rospy.Time.now()
        seconds = rospy.Duration(2)
        endtime = right_now + seconds
        msg.header.stamp = rospy.Time.now()
        msg.value = value
        msg.angle = angle
        rospy.loginfo('Force vector data sent')
        pub = rospy.Publisher('force_vect', vect_msg, queue_size=10)
        while rospy.Time.now() < endtime:
            pub.publish(msg)

    if not leftfront_sub.states:
        pass
    else:
        leftfront_force = leftfront_sub.states[0].total_wrench.force.x
        rospy.loginfo('Ive been toched from the left F=%s\n', leftfront_force)
        # Fill vector message
        angle = 90
        value = -1
        right_now = rospy.Time.now()
        seconds = rospy.Duration(2)
        endtime = right_now + seconds
        msg.header.stamp = rospy.Time.now()
        msg.value = value
        msg.angle = angle

        rospy.loginfo('Force vector data sent')
        pub = rospy.Publisher('force_vect', vect_msg, queue_size=10)
        while rospy.Time.now() < endtime:
            pub.publish(msg)

    msg.header.stamp = rospy.Time.now()
    msg.value = value
    msg.angle = angle
    pub = rospy.Publisher('force_vect', vect_msg, queue_size=10)
    pub.publish(msg)
    rospy.loginfo('Force vector data sent')
Exemple #2
0
def callback(light_sub, image_sub):
    light_val = light_sub.illuminance
    # Measurement of the Photometric Illuminance in Lux.
    # rospy.loginfo('The illuminance value is %s\n', light_val)
    msg = vect_msg()
    #TODO define here a behavior according to the lux value
    angle = 0
    # Fill vector message
    msg.angle = angle
    msg.value = light_val
    msg.header.stamp = rospy.Time.now()
    pub = rospy.Publisher('light_vect', vect_msg, queue_size=10)
    pub.publish(msg)
Exemple #3
0
def wandering():
    rospy.init_node('wandering', anonymous=True)
    pub = rospy.Publisher('wander_vect', vect_msg, queue_size=10)
    msg = vect_msg()
    rate = rospy.Rate(10)  # 10hz

    while not rospy.is_shutdown():
        value = 1
        angle = random.randint(1, 360)
        # Fill vector message
        msg.angle = angle
        msg.value = value
        msg.header.stamp = rospy.Time.now()
        pub.publish(msg)
        rospy.loginfo('Wander vector sent')
        rate.sleep()
Exemple #4
0
def callback(vel_sub, x_sub, pub):
    print('aaaaaaaaa')
    U = vect_msg()
    Xest = Odometry()
    cmd = Twist()
    U = vel_sub
    Xest = x_sub
    # Variable assignation:
    x_ref = U.value                    
    x_est = Xest.twist.twist.linear.x
    [yaw, pitch, roll] = get_rotation(Xest)
    psi_ref = U.angle
    psi_est = yaw*180/math.pi
    # Error computation:
    x_error = x_ref-x_est
    psi_error = psi_ref-psi_est
    # print(psi_est)
    print(x_ref)
    print(psi_ref)
    
    # Control
    x_cmd = x_error*0.25
    psi_cmd = psi_error*0.3
    # Normalization
    psi_cmd = psi_cmd/180 #degrees
    x_cmd = x_cmd/1
    # Saturation
    if psi_cmd > 0.5:
        psi_cmd = 0.5
    if psi_cmd < -0.5:
        psi_cmd = -0.5
    if x_cmd > 1:
        x_cmd = 1
    if x_cmd < -1:
        x_cmd = -1
    
    # Transform into velocity commands
    cmd.linear.x = x_cmd
    cmd.angular.z = psi_cmd
    # Publishing
    pub.publish(cmd)
    rospy.loginfo("In the loop")
Exemple #5
0
#!/usr/bin/env python

import rospy
import math
import random
from myrobot.msg import vect_msg
import message_filters
import vector_fcn as vectfcn

msg = vect_msg()
def arbiter():
    rospy.init_node('arbiter',anonymous=True) # Create goal node called 'trajplan'
    pub = rospy.Publisher('ref_vel',vect_msg,queue_size=10) #create goal publisher in the topic ref_vel, with vector_msg msgs
    # and goal queue_size (size of outgoing message) of 10
    rospy.loginfo("Status: Arbiter initialized") 
    # Subscribe to topics
    rs_sub = message_filters.Subscriber('/rs_vect', vect_msg)
    light_sub = message_filters.Subscriber('/light_vect', vect_msg)
    force_sub = message_filters.Subscriber('/force_vect', vect_msg)
    # Syncronize
    ts = message_filters.TimeSynchronizer([rs_sub,light_sub,force_sub], queue_size=10)
    # Register callback and publisher
    ts.registerCallback(callback,pub)
    rospy.spin()

def callback(rs_sub,light_sub,contact_sub,pub):
    # Collecting vectors
    vect_a  = [rs_sub.angle, rs_sub.value]
    vect_b  = [force_sub.angle, force_sub.value]
    vect_c  = [light_sub.angle, light_sub.value] 
    # Sum vectors
Exemple #6
0
def callback(color_raw, depth_raw,pub):
    test = vect_msg()
    msg = LaserScan()
    bridge = CvBridge()
    # realsense min and max distance 
    minDist = 0.3
    maxDist = 4.5
    # set show_depth to True to show the rgb and depth frames together
    rs_plt = True # Display what is seen in color frames
    show_depth = True
    # Show images
    if rs_plt:
        cv2.namedWindow('RealSense color', cv2.WINDOW_AUTOSIZE)
        cv2.namedWindow('RealSense depth', cv2.WINDOW_AUTOSIZE)
    try:
        
        try:
            color_image = bridge.imgmsg_to_cv2(color_raw, "bgr8")
            depth_image = bridge.imgmsg_to_cv2(depth_raw, "32FC1")
        except CvBridgeError as e:
            print(e)
        
        depth_array = np.array(depth_image, dtype=np.float32)
        norm_depth=cv2.normalize(depth_array, depth_array, 0, 1, cv2.NORM_MINMAX)
        valX = np.arange(30,609,10)
        valY = np.array([200])
        dist = np.zeros(len(valX))
        valid_matrix =np.zeros(len(valX))
        color = np.asanyarray(color_image)
        colorized_depth = np.asanyarray(depth_image)


        for xCount in range(0,len(valX)):
            distance = colorized_depth[valY[0],valX[xCount]]
            if(distance < minDist) or math.isnan(distance)==True:
                distance =  np.inf
                valid_matrix[xCount] = 0
            else:
                valid_matrix[xCount] = 1
            dist[xCount] = distance
            if rs_plt:
                cv2.circle(color,(valX[xCount],valY[0]),5,(0,0,255),2)
                cv2.circle(colorized_depth,(valX[xCount],valY[0]),5,(0,255,0),2)

        # # Find index of valid  values 
        print(dist)

        RGB = np.dstack((norm_depth, np.zeros_like(norm_depth), np.zeros_like(norm_depth)))
        grey_3_channel = cv2.cvtColor(norm_depth, cv2.COLOR_GRAY2BGR)

        if rs_plt:
            cv2.imshow('RealSense color', color)
            if show_depth:
                cv2.imshow('RealSense depth', grey_3_channel)
                
            k = cv2.waitKey(1) & 0xFF
            if k == ord('q'):
                # break
                pass

            # Send data
            msg.header.stamp=rospy.Time.now()
            msg.header.frame_id='RealSense'
            msg.angle_min = 0
            msg.angle_max = 6.28319
            msg.time_increment = 0;  # instantaneous simulator scan
            # msg.angle_increment=0.017
            msg.scan_time = 0;  # not sure whether this is correct
            msg.range_min = 0.11
            msg.range_max = 3.5
            msg.ranges = dist
            msg.intensities = np.zeros(len(dist))
            # msg.header.stamp = rospy.Time.now()
            # msg.angle = dist[1][1]
            # msg.value = dist[1][0]
            # rospy.loginfo('Realsense vector data sent')
            pub.publish(msg)

    finally:
        pass
Exemple #7
0
def callback(color_raw, depth_raw, pub):
    print('abcdefghijk\n')
    test = vect_msg()
    msg = vect_msg()
    bridge = CvBridge()
    # realsense min and max distance
    minDist = 0.3
    maxDist = 4.5
    # rs_plt = rospy.get_param("/rs_video")
    # show_depth = rospy.get_param("/rs_depth")
    # set show_depth to True to show the rgb and depth frames together
    rs_plt = True  # Display what is seen in color frames
    show_depth = False
    # Show images
    if rs_plt:
        cv2.namedWindow('RealSense', cv2.WINDOW_AUTOSIZE)

    try:
        # while not rospy.is_shutdown():

        # # skip 5 first frames to give Auto-Exposure time to adjust
        # for i in range(5):
        #     pipeline.wait_for_frames()
        # Wait for a coherent pair of frames: depth and color
        # frames = pipeline.wait_for_frames()
        # color_frame = frames.get_color_frame()
        # depth_frame = frames.get_depth_frame()

        # Access color component of the frame
        # color = np.asanyarray(color_frame.get_data())
        try:
            color_image = bridge.imgmsg_to_cv2(color_raw, "bgr8")
            depth_image = bridge.imgmsg_to_cv2(depth_raw, "32FC1")
        except CvBridgeError as e:
            print(e)

        depth_array = np.array(depth_image, dtype=np.float32)
        cv2.normalize(depth_array, depth_array, 0, 1, cv2.NORM_MINMAX)
        # Access depth component
        # colorizer = rs.colorizer()
        # colorizer_depth = np.asanyarray(colorizer.colorize(depth_frame).get_data()
        # Depth and rgb image alignment
        # align = rs.align(rs.stream.color)
        # frames = align.process(frames)
        # aligned_depth_frame = frames.get_depth_frame()
        # colorized_depth = np.asanyarray(colorizer.colorize(aligned_depth_frame).get_data())
        valX = np.array([30, 319, 609])
        valY = np.array([30, 239, 449])
        dist = np.zeros((3, 3))
        valid_matrix = np.zeros((3, 3))
        color = np.asanyarray(color_image)
        colorized_depth = np.asanyarray(depth_image)
        # print(colorized_depth)
        # print(len(colorized_depth[1]))
        # print((colorized_depth[120,1]))
        # print((colorized_depth[120,319]))

        for xCount in range(0, 3):
            for yCount in range(0, 3):
                distance = colorized_depth[valY[yCount], valX[xCount]]
                if (distance < 0.3) or math.isnan(distance) == True:
                    distance = np.inf
                    valid_matrix[yCount, xCount] = 0
                else:
                    valid_matrix[yCount, xCount] = 1
                dist[yCount, xCount] = distance
                if rs_plt:
                    cv2.circle(color, (valX[xCount], valY[yCount]), 5,
                               (0, 0, 255), 2)
                    cv2.circle(colorized_depth, (valX[xCount], valY[yCount]),
                               5, (0, 255, 0), 2)
        # print("\033c")
        # print(dist)
        # # Find index of valid  values
        print(dist)
        validIdxL = np.nonzero(valid_matrix[0:3, 0])
        validIdxR = np.nonzero(valid_matrix[0:3, 2])

        # if(((len(validIdxL[0]))>1 and len(validIdxR[0]))>1):
        #         angle = 180 - (np.mean(dist[validIdxL,0]) - np.mean(dist[validIdxR,2]))*180/np.pi
        #         value = 1/np.amin(dist)
        #         # #TODO remove print functions
        #         # print(validIdxL[0])
        #         # print(dist[validIdxL,0])
        #         # saturation
        #         if value > 1/minDist:       # saturation to max speed
        #             value = 1.5
        #         if value<1/maxDist:     # saturation to min speed
        #             value = 0
        # else:
        #     angle = 0
        #     value = 0

        if (((len(validIdxL[0])) > 1 and len(validIdxR[0])) > 1):
            angle = 180 - (np.mean(dist[validIdxL, 0]) -
                           np.mean(dist[validIdxR, 2])) * 180 / np.pi
            value = 1 / np.amin(dist)
            # #TODO remove print functions
            # print(validIdxL[0])
            # print(dist[validIdxL,0])
            # saturation
            if value > 1 / minDist:  # saturation to max speed
                value = 1.5
            if value < 1 / maxDist:  # saturation to min speed
                value = 0
        else:
            angle = 0
            value = 0
        print(angle, value)
        vect = [angle, value]

        #FIXME: make a simultaneous visualization of depth and color frames
        if show_depth:
            images = np.hstack((color, colorized_depth))
        else:
            images = color
        if rs_plt:
            cv2.imshow('RealSense', images)
            k = cv2.waitKey(1) & 0xFF
            if k == ord('q'):
                # break
                pass

    #         # Send data
            msg.header.stamp = rospy.Time.now()
            msg.angle = vect[0]
            msg.value = vect[1]
            rospy.loginfo('Realsense vector data sent')
            pub.publish(msg)

    # finally:
    #     # Stop streaming
    #     pipeline.stop()
    finally:
        pass
Exemple #8
0
def callback(color_raw, depth_raw, pub):
    test = vect_msg()
    msg = vect_msg()
    bridge = CvBridge()
    # realsense min and max distance
    minDist = 0.3
    maxDist = 4.5
    # set show_depth to True to show the rgb and depth frames together
    rs_plt = True  # Display what is seen in color frames
    show_depth = True
    # Show images
    if rs_plt:
        cv2.namedWindow('RealSense color', cv2.WINDOW_AUTOSIZE)
        cv2.namedWindow('RealSense depth', cv2.WINDOW_AUTOSIZE)
    try:

        try:
            color_image = bridge.imgmsg_to_cv2(color_raw, "bgr8")
            depth_image = bridge.imgmsg_to_cv2(depth_raw, "32FC1")
        except CvBridgeError as e:
            print(e)

        depth_array = np.array(depth_image, dtype=np.float32)
        norm_depth = cv2.normalize(depth_array, depth_array, 0, 1,
                                   cv2.NORM_MINMAX)

        valX = np.array([30, 319, 609])
        valY = np.array([30, 239, 449])
        dist = np.zeros((3, 3))
        valid_matrix = np.zeros((3, 3))
        color = np.asanyarray(color_image)
        colorized_depth = np.asanyarray(depth_image)
        # print(colorized_depth)
        # print(len(colorized_depth[1]))
        # print((colorized_depth[120,1]))
        # print((colorized_depth[120,319]))

        for xCount in range(0, 3):
            for yCount in range(0, 3):
                distance = colorized_depth[valY[yCount], valX[xCount]]
                if (distance < minDist) or math.isnan(distance) == True:
                    distance = np.inf
                    valid_matrix[yCount, xCount] = 0
                else:
                    valid_matrix[yCount, xCount] = 1
                dist[yCount, xCount] = distance
                if rs_plt:
                    cv2.circle(color, (valX[xCount], valY[yCount]), 5,
                               (0, 0, 255), 2)
                    cv2.circle(colorized_depth, (valX[xCount], valY[yCount]),
                               5, (0, 255, 0), 2)
        # print("\033c")
        # print(dist)
        # # Find index of valid  values
        print(dist)
        validIdxL = np.nonzero(valid_matrix[0:3, 0])
        validIdxR = np.nonzero(valid_matrix[0:3, 2])

        # if(((len(validIdxL[0]))>1 and len(validIdxR[0]))>1):
        #         angle = 180 - (np.mean(dist[validIdxL,0]) - np.mean(dist[validIdxR,2]))*180/np.pi
        #         value = 1/np.amin(dist)
        #         # #TODO remove print functions
        #         # print(validIdxL[0])
        #         # print(dist[validIdxL,0])
        #         # saturation
        #         if value > 1/minDist:       # saturation to max speed
        #             value = 1.5
        #         if value<1/maxDist:     # saturation to min speed
        #             value = 0
        # else:
        #     angle = 0
        #     value = 0

        if (((len(validIdxL[0])) > 1 and len(validIdxR[0])) > 1):
            angle = 180 - (np.mean(dist[validIdxL, 0]) -
                           np.mean(dist[validIdxR, 2])) * 180 / np.pi
            value = 1 / np.amin(dist)
            # #TODO remove print functions
            # print(validIdxL[0])
            # print(dist[validIdxL,0])
            # saturation
            if value > 1 / minDist:  # saturation to max speed
                value = 1.5
            if value < 1 / maxDist:  # saturation to min speed
                value = 0
        else:
            angle = 0
            value = 0
        print(angle, value)
        vect = [angle, value]
        RGB = np.dstack(
            (norm_depth, np.zeros_like(norm_depth), np.zeros_like(norm_depth)))
        grey_3_channel = cv2.cvtColor(norm_depth, cv2.COLOR_GRAY2BGR)

        if rs_plt:
            cv2.imshow('RealSense color', color)
            if show_depth:
                cv2.imshow('RealSense depth', grey_3_channel)

            k = cv2.waitKey(1) & 0xFF
            if k == ord('q'):
                # break
                pass

            # Send data
            msg.header.stamp = rospy.Time.now()
            msg.angle = dist[1][1]
            msg.value = dist[1][0]
            rospy.loginfo('Realsense vector data sent')
            pub.publish(msg)

    finally:
        pass