track_data = [] popularity = track["track"]["popularity"] if popularity == 0: continue #skip any track with 0 popularity, because I'm unsure if this is a default value else: #name = track["track"]["name"] #track_data.append(name) # will be ignored but could but each track_data_obj should be identifiable features_dict = sp.audio_features(track["track"]["id"]) #this returns a features dictonary for key in features_dict[0]: #loop through and add only the attributes we want if key != "type" and key != "id" and key != "uri" and key != "track_href" and key != "analysis_url" and key != "time_signature" and key != "mode" and key != "key" and key != "loudness": val = features_dict[0][key] if key != "tempo" and key != "duration_ms": val = myutils.percent_to_rating(val) track_data.append(val) # if first == True: # header.append(key) # first = False pop_class = myutils.pop_rating(popularity) track_data.append(pop_class) # popularity will be the y_train track_data_objs.append(track_data) # header.append("popularity") # now we can turn this into an xtrain and ytrain or keep it stitched together # when dealing with the data we can delete the first col, which is the name identifier print(len(track_data_objs)) header = ['danceability', 'energy', 'speechiness', 'acousticness', 'instrumentalness', 'liveness', 'valence', 'tempo', 'duration_ms', 'popularity'] tracks_mypy = MyPyTable(header, track_data_objs) tracks_mypy.save_to_file("tracks_data.txt")
from mysklearn.mypytable import MyPyTable # Object Declaration table = MyPyTable() # Trims the Dataset (Gets Data Based on City) city = "Sydney" table.load_from_file("weatherAUS.csv") table.column_names[0] = 'Location' names, tables = table.group_by("Location") city_index = names.index(city) print("\n") for i in range(10): print(tables[city_index][i]) table.data = tables[city_index] table.save_to_file(city+"_weather.csv")