Exemple #1
0
def grideventmask(allpolys, s, lon, lat):
    '''Returns a mask for gridded dataset for each day of each event
    format: dictionary for each entry'''
    keylist = allpolys.keys()
    keylist.sort()

    gridmasks = {}
    masklist = []
    maskdtimes = []
    maskekeys = []
    for k in keylist:
        polylist = []
        hrsince = s.events[k].trkarrs[s.events[k].refkey][:, 0]
        dtimes = my.hrnum2dates(hrsince)
        chulltrue = s.events[k].trkarrs[s.events[k].refkey][:, 1] != -1
        print chulltrue, dtimes
        cnt = 0
        for poly in allpolys[k]:
            if chulltrue[cnt]:
                chmask = my.poly2mask(lon, lat, poly)
                polylist.append(chmask)
                masklist.append(chmask)
                maskdtimes.append(dtimes[cnt])
                maskekeys.append(k)
            cnt += 1
        gridmasks[k] = polylist

    return gridmasks, masklist, maskdtimes, maskekeys
Exemple #2
0
def clim_wetdayspercent(erainmasked, rtime, wetness=1):
    '''clim_wetdayspercent(erainmasked,rtime)

    Usage: erainm is outputfrom projectrainmask_in2_rawdata
           rtime is associated time
    Returns: wetdayscount (stations x 13) (ndarray), 12 months and annual mean
             freq_wet      frequency of wewet
             scycle_wet & scycle_freqwet (stations x nseasons x nmonths),
             which are same as above stats but per season'''
    season = [8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6, 7]
    dates = my.hrnum2dates(rtime)
    years = np.unique(dates[:, 0])

    wetdayscnt = np.zeros((erainmasked.shape[0], len(season)))
    freqwet = wetdayscnt.copy()
    eventmask = ~erainmasked.mask
    wetmask = erainmasked.data > wetness

    # LOOK AT THE TOTAL PERCENTAGE IN ALL DATA
    cnt = 0
    for mn in season:
        ix = np.where(dates[:, 1] == mn)[0]
        wetmsk = np.int32(wetmask[:, ix])
        ewetmsk = np.int32(wetmask[:, ix] & eventmask[:, ix])
        wetdayscnt[:, cnt] = wetmsk.sum(1) / np.float32(len(years))
        freqwet[:, cnt] = ewetmsk.sum(1) / np.float32(len(years)) / np.float32(
            wetdayscnt[:, cnt])
        cnt += 1
    # SPLIT UP BY ACTUAL SEASONS
    scycle_wet = np.zeros((erainmasked.shape[0], len(years[:-1]), len(season)))
    scycle_freqwet = scycle_wet.copy()
    for iyr in xrange(len(years[:-1])):
        yr = years[iyr]
        for imn in xrange(len(season)):
            mn = season[imn]
            if imn < 5:
                ix = np.where((dates[:, 0] == yr) & (dates[:, 1] == mn))[0]
                wetmsk = np.int32(wetmask[:, ix])
                ewetmsk = np.int32(wetmask[:, ix] & eventmask[:, ix])
            else:
                ix = np.where((dates[:, 0] == yr + 1) & (dates[:, 1] == mn))[0]
                wetmsk = np.int32(wetmask[:, ix])
                ewetmsk = np.int32(wetmask[:, ix] & eventmask[:, ix])
            scycle_wet[:, iyr, imn] = wetmsk.sum(1)
            scycle_freqwet[:, iyr,
                           imn] = ewetmsk.sum(1) / np.float32(wetmsk.sum(1))
    return wetdayscnt, freqwet, scycle_wet, scycle_freqwet
Exemple #3
0
def eventanddaycount(s, rainmasks):
    '''Simple count of number of events and rain days per month'''
    erain, etime, ekeys, flagarr = rainmasks['rain']
    uky, ixk = np.unique(ekeys, return_index=True)
    erain, etime, ekeys, flagarr = erain[
        ixk, :], etime[ixk], ekeys[ixk], flagarr[ixk, :]
    ixwet = np.any(~erain.mask).nonzero()
    edates = my.hrnum2dates(etime)
    yrs = np.unique(edates[:, 0])
    yrs = yrs[:-1]

    eventcnt = np.zeros((len(yrs), len(season)), dtype=np.float32)
    daycnt = np.zeros((len(yrs), len(season)), dtype=np.float32)
    iyr = -1
    for yr in yrs:
        iyr += 1
        imn = -1
        for mn in season:
            imn += 1
            ix = np.where((edates[:, 0] == yr) & (edates[:, 1] == mn))
            if len(ix) > 0: ix = ix[0]
            else:
                eventcnt[iyr, imn], daycnt[iyr, imn] = 0, 0
                continue
            mnkeys = ekeys[ix]
            nky = len(mnkeys)
            dcnt = 0
            for k in mnkeys:
                dcnt += len((
                    ~np.isnan(s.events[k].rainfall['wrc'][:, 0])).nonzero()[0])
            eventcnt[iyr, imn] = nky
            daycnt[iyr, imn] = dcnt

    octmarecnt = eventcnt.sum(1)
    octmardcnt = daycnt.sum(1)
    summarystats = {
        'eventcnt_mean': eventcnt.mean(0),
        'eventcnt_std': eventcnt.std(0),
        'daycnt_mean': daycnt.mean(0),
        'daycnt_std': daycnt.std(0),
        'ONDJFevent_mean': octmarecnt.mean(),
        'ONDJFevent_std': octmarecnt.std(),
        'ONDJFday_mean': octmardcnt.mean(),
        'ONDJFday_std': octmardcnt.std()
    }

    return eventcnt, daycnt, octmarecnt, octmardcnt, summarystats
Exemple #4
0
def multiplot(e, m, etime, blobkeylist, trkkeylist, *args):
    '''A plotting multitool that can plot all variables used and produced
    by MetBot package
    USAGE: etime can either be a tuple = (hrsbefore, hrsafter)
                 or a list = [flagday1,flagday2]
           *args are gridded dataset and rainfall station dataset lists
                 [mbskey,data,lat,lon,time,alt_mbskey]
            IMPORTANT: if u,v vector pairs are supplied,
                       they must be supplied in that order
                       if u,v vector pairs for multiple levels are supplied
                       they need to be kept paired'''
    ### UNPACK *ARGS LISTS OF VARIABLES INTO USABLE FORMAT
    hgtlist, uvlist, quvlist, olrlist = [], [], [], []
    print 'Event:', e.trkkey
    for arg in args:
        v = arg[0]
        dset, varstr, lev, drv = v.split('-')
        varlev = varstr + '_' + lev
        #print varlev
        exec(varlev + 'key,' + varlev + ',' + varlev + 'lat,' + varlev +
             'lon,' + varlev + 'time,' + varlev + '_altkey=arg')
        if varstr == 'qv': quvlist.append(['qu' + '_' + lev, varlev])
        elif varstr == 'hgt': hgtlist.append(varlev)
        elif varstr == 'v': uvlist.append(['u' + '_' + lev, varlev])

    ### PLOT TRKARRS DATA USING INDEX LIST
    masktimes = e.trkarrstime[e.refkey]
    # this because had some issues with some empty trakarrs which won't have the times6hr needed
    for nmbs in e.mbskeys[3:]:
        if ~isinstance(e.trkarrs[nmbs], dict): mbs6hrkey = nmbs
    times6hr = e.trkarrstime[nmbs]  # Used for labeling of figure
    dlabels, ixlist, flarr = daylabel(e, etime)
    for i in ixlist:
        # OLR PLOT
        if 'olr_0' in locals():
            eolr = maskeddata(e, i, olr_0, olr_0time, olr_0key)
            plotolr(m, olr_0lat, olr_0lon, eolr)
        # HGT PLOT
        for ph in hgtlist:
            exec('hgt, hgtlat, hgtlon, hgttime, hgtkey = ' + ph + ', ' + ph +
                 'lat, ' + ph + 'lon, ' + ph + 'time, ' + ph + 'key')
            ehgt = maskeddata(e, i, hgt, hgttime, hgtkey)
            plothgt(m, hgtlat, hgtlon, ehgt)
        # STATION RAINFALL PLOT
        if 'rain_0' in locals():
            plotrainstations(m, e, i, rain_0, rain_0lat, rain_0lon, rain_0time)
        # BLOB CONTOURS
        for blbkey in blobkeylist:
            plotblob(m, e, i, blbkey, blobkeylist.index(blbkey))
        # BLOB TRACKS
        for trkkey in trkkeylist:
            plottrack(m, e, i, trkkey, trkkeylist.index(trkkey))
        # QUV PLOT
        cnt = 0
        for pqu, pqv in quvlist:
            exec('qu, qv, qlat, qlon, qtime, qu_altkey, qv_altkey = ' + pqu +
                 ', ' + pqv + ', ' + pqu + 'lat, ' + pqu + 'lon, ' + pqu +
                 'time, ' + pqu + '_altkey, ' + pqv + '_altkey')
            equ = maskeddata(e, i, qu, qtime, qu_altkey)
            eqv = maskeddata(e, i, qv, qtime, qv_altkey)
            plotquv(m, qlat, qlon, equ, eqv, cols[cnt])
            cnt += 1
        cnt = 0
        for pu, pv in uvlist:
            exec('u, v, qlat, qlon, qtime, u_altkey, v_altkey = ' + pu + ', ' +
                 pv + ', ' + pu + 'lat, ' + pu + 'lon, ' + pu + 'time, ' + pu +
                 '_altkey, ' + pv + '_altkey')
            eu = maskeddata(e, i, u, qtime, u_altkey)
            ev = maskeddata(e, i, v, qtime, v_altkey)
            plotuv(m, qlat, qlon, eu, ev, gcols[cnt])
            cnt += 1
        # DRAW EVERYTHING
        redrawmap(m, lns=True)
        # a little thing to handle time labeling relative to event flagging
        tm6, tm24 = times6hr[i], masktimes[i]
        tdate = my.hrnum2dates([tm6])[0]
        eventcode = dlabels[i]
        humandate = 'Date: %02d-%02d-%02d %02dh00' % (tdate[2], tdate[1],
                                                      tdate[0], tdate[3])
        plt.title(str(e.trkkey) + ': ' + eventcode)
        plt.text(30, -49, humandate)
        plt.draw()
        # SAVE FIGURE
        dstring = str(e.trkkey) + '_%02d-%02d-%02d_%02dh00' % (
            tdate[0], tdate[1], tdate[2], tdate[3])
        fname = figdir + dstring + '.png'
        plt.savefig(fname, dpi=150)
        #sleep(1)
        #raw_input()
        plt.clf()
Exemple #5
0
def extremerainfall(s,
                    kchoice,
                    rain,
                    rtime,
                    perc=.95,
                    areacrit=.1,
                    selectmonths=False):
    '''extremeindices, assocTTT,assocTCOL = extremerainfall(s,kchoice,rain,rtime,perc=.95,areacriteria=.1,selectmonths=False))

    Big and ungainly approach to get out extreme rainfall day indices and associations to TTTs
    Usage: pretty obvious
    Returns: extremeindices, ndarray of extreme days in rain data set
             assocTTTs, ndarray of (extremeeventkey, ttteventkey, eventsoverlap_in_days, cutofflow_or_not)
             assocTCOL, same as above but where cutofflow_or_not is true'''
    rsort = rain.copy()
    rsort.sort(axis=1)
    ### CALCULATE EXTREME VALUE CRITERIA FOR EACH STATION
    wet = (rsort > 1.)
    extrmvals = np.zeros((rsort.shape[0]))
    for istn in xrange(rsort.shape[0]):
        iw = wet[istn, :].nonzero()[0]
        iex = int(len(iw) * perc)
        iexwet = iw[iex]
        extrmvals[istn] = rsort[istn, iexwet]

    ### PRODUCE TIME INDICES OF EXTREME DATES AND A EXTREME ARRAY MASK OF DATES
    extrm_ixt = []
    exmsk = np.ones(rain.shape, dtype=np.bool)
    nstns = rain.shape[0]
    areacriteria = int(nstns * areacrit)
    for ixt in xrange(rain.shape[1]):
        exmsk[:, ixt] = (rain[:, ixt] >= extrmvals)
        if len(exmsk[:, ixt].nonzero()[0]) >= areacriteria:
            extrm_ixt.append(ixt)
    ### GET EXTREME RAINFALL DATES
    extrm_ixt = np.asarray(extrm_ixt)
    ### IF ONLY SELECTING EXTREMES FROM PARTICULAR MONTHS
    if selectmonths:
        ixselect = []
        exdates = my.hrnum2dates(rtime[extrm_ixt])
        for mn in selectmonths:
            ixselmn = np.where(exdates[:, 1] == mn)
            if len(ixselmn) > 0: ixselect.extend(ixselmn[0])
            else: continue
        extrm_ixt = extrm_ixt[ixselect]
    exrtime = rtime[extrm_ixt]

    consecutive = np.array([0], dtype=np.int32)
    consecutive = np.append(consecutive, extrm_ixt[1:] - extrm_ixt[:-1])

    extrmevents = {}
    ix = 0
    while ix < len(extrm_ixt):
        ixlist = [extrm_ixt[ix]]
        if ix + 1 >= len(extrm_ixt):
            extrmevents[int(rtime[ixlist[0]])] = ixlist
            ix += 1
            continue
        diff = consecutive[ix + 1]
        if diff == 1:
            ix += 1
            while diff == 1:
                ixlist.append(extrm_ixt[ix])
                ix += 1
                if ix >= len(extrm_ixt): break
                diff = consecutive[ix]
        else:
            ix += 1
        extrmevents[int(rtime[ixlist[0]])] = ixlist

    ttttime, tttkeys = [], []
    for k in kchoice:
        ktimes = list(s.events[k].trktimes)
        ttttime.extend(list(ktimes))
        for dum in xrange(len(ktimes)):
            tttkeys.append(k)

    ttttime, tttkeys = np.asarray(ttttime), np.asarray(tttkeys)
    extrmkeys = extrmevents.keys()
    extrmkeys.sort()
    assoc = []
    for k in extrmkeys:
        tttk = []
        exhrs = rtime[extrmevents[k]]
        #print exhrs
        for hr in exhrs:
            imatch = np.where(ttttime == hr)[0]
            #print int(hr),imatch,len(imatch)
            if len(imatch) == 0:
                continue
            else:
                imatch = list(imatch)
                #print imatch
                tttk.extend(tttkeys[imatch])
        tkey = list(np.unique(np.asarray(tttk)))
        col = 0
        if 'COL' in s.events[kchoice[0]].trkarrs.keys():
            for tk in tkey:
                if len(s.events[tk].trkarrs['COL']) > 0: col += 1
        #print tkey
        ### USE THIS SETUP TO CAPTURE THE SOMETIMES 2 OR MORE CLOUD BAND EVENTS ASSOCIATED TO EXTREME RAINFALL
        #if len(tttk)>0:assoc.append((k,tkey,len(tttk)))
        #else:assoc.append((k,[0],0))
        if len(tttk) > 0: assoc.append((k, tkey[-1], len(tttk), col))
        else: assoc.append((k, 0, 0, 0))
    assoc = np.asarray(assoc, dtype=np.int32)

    assocTTT = assoc[assoc[:, 1].nonzero()[0], :]
    assocTCOL = assoc[assoc[:, 3].nonzero()[0], :]
    print assoc.shape, assocTTT.shape, assocTCOL.shape

    return extrm_ixt, extrmevents, assocTTT, assocTCOL