Exemple #1
0
def train(args, epoch):
    losses, psnrs, ssims = myutils.init_meters(args.loss)
    model.train()
    criterion.train()

    t = time.time()
    for i, (images, gt_image) in enumerate(train_loader):

        # Build input batch
        images = [img_.cuda() for img_ in images]
        gt = [gt_.cuda() for gt_ in gt_image]

        # Forward
        optimizer.zero_grad()
        out = model(images)

        out = torch.cat(out)
        gt = torch.cat(gt)

        loss, loss_specific = criterion(out, gt)

        # Save loss values
        for k, v in losses.items():
            if k != 'total':
                v.update(loss_specific[k].item())
        losses['total'].update(loss.item())

        loss.backward()
        optimizer.step()

        # Calc metrics & print logs
        if i % args.log_iter == 0:
            myutils.eval_metrics(out, gt, psnrs, ssims)

            print('Train Epoch: {} [{}/{}]\tLoss: {:.6f}\tPSNR: {:.4f}'.format(
                epoch,
                i,
                len(train_loader),
                losses['total'].avg,
                psnrs.avg,
                flush=True))

            # Log to TensorBoard
            timestep = epoch * len(train_loader) + i
            writer.add_scalar('Loss/train', loss.data.item(), timestep)
            writer.add_scalar('PSNR/train', psnrs.avg, timestep)
            writer.add_scalar('SSIM/train', ssims.avg, timestep)
            writer.add_scalar('lr', optimizer.param_groups[-1]['lr'], timestep)

            # Reset metrics
            losses, psnrs, ssims = myutils.init_meters(args.loss)
            t = time.time()
Exemple #2
0
def test(args):
    time_taken = []
    losses, psnrs, ssims = myutils.init_meters(args.loss)
    model.eval()

    psnr_list = []
    with torch.no_grad():
        for i, (images, gt_image) in enumerate(tqdm(test_loader)):

            images = [img_.cuda() for img_ in images]
            gt = [g_.cuda() for g_ in gt_image]

            torch.cuda.synchronize()
            start_time = time.time()
            out = model(images)

            out = torch.cat(out)
            gt = torch.cat(gt)

            torch.cuda.synchronize()
            time_taken.append(time.time() - start_time)

            myutils.eval_metrics(out, gt, psnrs, ssims)

    print("PSNR: %f, SSIM: %fn" % (psnrs.avg, ssims.avg))
    print("Time , ", sum(time_taken) / len(time_taken))

    return psnrs.avg
Exemple #3
0
def test(args, epoch):
    print('Evaluating for epoch = %d' % epoch)
    losses, psnrs, ssims = myutils.init_meters(args.loss)
    model.eval()
    criterion.eval()
        
    t = time.time()
    with torch.no_grad():
        for i, (images, gt_image) in enumerate(tqdm(test_loader)):

            images = [img_.cuda() for img_ in images]
            gt = [gt_.cuda() for gt_ in gt_image]

            out = model(images) ## images is a list of neighboring frames
            out = torch.cat(out)
            gt = torch.cat(gt)

            # Save loss values
            loss, loss_specific = criterion(out, gt)
            for k, v in losses.items():
                if k != 'total':
                    v.update(loss_specific[k].item())
            losses['total'].update(loss.item())

            # Evaluate metrics
            myutils.eval_metrics(out, gt, psnrs, ssims)
                    
    # Print progress
    print("Loss: %f, PSNR: %f, SSIM: %f\n" %
          (losses['total'].avg, psnrs.avg, ssims.avg))

    # Save psnr & ssim
    save_fn = os.path.join(save_loc, 'results.txt')
    with open(save_fn, 'a') as f:
        f.write('For epoch=%d\t' % epoch)
        f.write("PSNR: %f, SSIM: %f\n" %
                (psnrs.avg, ssims.avg))

    # Log to TensorBoard
    timestep = epoch +1
    writer.add_scalar('Loss/test', loss.data.item(), timestep)
    writer.add_scalar('PSNR/test', psnrs.avg, timestep)
    writer.add_scalar('SSIM/test', ssims.avg, timestep)

    return losses['total'].avg, psnrs.avg, ssims.avg
Exemple #4
0
def test(args):
    time_taken = []
    img_save_id = 0
    losses, psnrs, ssims = myutils.init_meters(args.loss)
    model.eval()

    psnr_list = []
    with torch.no_grad():
        for i, (images, name) in enumerate((test_loader)):

            if name[0] not in folderList:
                continue

            images = torch.stack(images, dim=1).squeeze(0)

            # images = [img_.cuda() for img_ in images]

            H, W = images[0].shape[-2:]
            resizes = 8 * (H // 8), 8 * (W // 8)

            import torchvision
            transform = Resize(resizes)
            rev_transforms = Resize((H, W))
            images = transform(images).unsqueeze(0).cuda(
            )  # [transform(img_.squeeze(0)).unsqueeze(0).cuda() for img_ in images]
            images = torch.unbind(images, dim=1)

            start_time = time.time()
            out = model(images)
            print("Time Taken", time.time() - start_time)

            out = torch.cat(out)
            out = rev_transforms(out)

            output_image = make_image(out.squeeze(0))

            import imageio
            os.makedirs("Middleburry/%s/" % name[0])
            imageio.imwrite("Middleburry/%s/frame10i11.png" % name[0],
                            output_image)

    return