def test_gatekeeper(self, total_duration=14.0, stimulus_period=(2.0, 12.0), gate_period=(5.0, 8.0), delay=0.01): startTime = time() timeNow = 0.0 n1 = Neuron((0.0, 0.0, 0.0), timeNow) n2 = Neuron((0.0, 0.0, 1.0), timeNow) g1 = Neuron((-1.0, -1.0, 1.0), timeNow) # gatekeeper n1.synapseWith(n2, None, g1) # auto-initialize synaptic strength # Set up plotting figure(figsize = (12, 9)) hold(True) # [graph] ax = subplot(311) # [graph] xlim(0.0, total_duration) # [graph] ylim(action_potential_trough.mu - 0.01, action_potential_peak + 0.01) # [graph] setup_neuron_plot("Presynaptic neuron", None, None) ax.get_xaxis().set_ticklabels([]) ax = subplot(312) # [graph] xlim(0.0, total_duration) # [graph] ylim(action_potential_trough.mu - 0.01, action_potential_peak + 0.01) # [graph] setup_neuron_plot("Postsynaptic neuron", None, "Membrane potential (V)") ax.get_xaxis().set_ticklabels([]) subplot(313) # [graph] xlim(0.0, total_duration) # [graph] ylim(action_potential_trough.mu - 0.01, action_potential_peak + 0.01) # [graph] setup_neuron_plot("Gatekeeper neuron", "Time (s)", None) subplots_adjust(hspace = 0.33) while timeNow <= total_duration: timeNow = time() - startTime if stimulus_period[0] <= timeNow <= stimulus_period[1]: n1.accumulate(np.random.normal(0.004, 0.0005)) # TODO accumulate value based on deltaTime (since last accumulate) if gate_period[0] <= timeNow <= gate_period[1]: g1.accumulate(np.random.normal(0.0035, 0.0005)) n1.update(timeNow) #print n1.id, n1.timeCurrent, n1.potential # [log: potential] n2.update(timeNow) #print n2.id, n2.timeCurrent, n2.potential # [log: potential] g1.update(timeNow) subplot(311) # [graph] n1.plot() # [graph] subplot(312) # [graph] n2.plot() # [graph] subplot(313) # [graph] g1.plot() # [graph] pause(delay) # [graph] #sleep(delay) if holdPlots: show() # [graph]
def test_inhibitor(self, total_duration=14.0, stimulus_period=(2.0, 12.0), inhibition_period=(5.0, 8.0), delay=0.01): startTime = time() timeNow = 0.0 n1 = Neuron((0.0, 0.0, 0.0), timeNow) n2 = Neuron((0.0, 0.0, 1.0), timeNow) i1 = Neuron((-1.0, -1.0, 1.0), timeNow) # inhibitor n1.synapseWith(n2) # no synaptic gating i1.synapseWith(n2, -np.random.normal(synaptic_strength.mu, synaptic_strength.sigma)) # inhibitory synapse # Set up plotting figure(figsize = (12, 9)) hold(True) # [graph] subplot(311) # [graph] xlim(0.0, total_duration) # [graph] ylim(action_potential_trough.mu - 0.01, action_potential_peak + 0.01) # [graph] setup_neuron_plot("Neuron " + str(n1.id)) subplot(312) # [graph] xlim(0.0, total_duration) # [graph] ylim(action_potential_trough.mu - 0.01, action_potential_peak + 0.01) # [graph] setup_neuron_plot("Neuron " + str(n2.id)) subplot(313) # [graph] xlim(0.0, total_duration) # [graph] ylim(action_potential_trough.mu - 0.01, action_potential_peak + 0.01) # [graph] setup_neuron_plot("Neuron " + str(i1.id) + " (inhibitor)") subplots_adjust(hspace = 0.33) while timeNow <= total_duration: timeNow = time() - startTime if stimulus_period[0] <= timeNow <= stimulus_period[1]: n1.accumulate(np.random.normal(0.004, 0.0005)) # TODO accumulate value based on deltaTime (since last accumulate) if inhibition_period[0] <= timeNow <= inhibition_period[1]: i1.accumulate(np.random.normal(0.0035, 0.0005)) n1.update(timeNow) #print n1.id, n1.timeCurrent, n1.potential # [log: potential] n2.update(timeNow) #print n2.id, n2.timeCurrent, n2.potential # [log: potential] i1.update(timeNow) subplot(311) # [graph] n1.plot() # [graph] subplot(312) # [graph] n2.plot() # [graph] subplot(313) # [graph] i1.plot() # [graph] pause(delay) # [graph] #sleep(delay) if holdPlots: show() # [graph]
def test_pair(self, pre_duration=2.0, stimulus_duration=10.0, post_duration=2.0, delay=0.01): total_duration = pre_duration + stimulus_duration + post_duration stimulus_begin = pre_duration stimulus_end = pre_duration + stimulus_duration startTime = time() timeNow = 0.0 n1 = Neuron((0.0, 0.0, 0.0), timeNow) n2 = Neuron((0.0, 0.0, 1.0), timeNow) n1.synapseWith(n2) # Set up plotting figure(figsize = (12, 9)) hold(True) # [graph] subplot(211) # [graph] xlim(0.0, total_duration) # [graph] ylim(action_potential_trough.mu - 0.01, action_potential_peak + 0.02) # [graph] setup_neuron_plot("Presynaptic neuron", None, "Membrane potential (V)") subplot(212) # [graph] xlim(0.0, total_duration) # [graph] ylim(action_potential_trough.mu - 0.01, action_potential_peak + 0.02) # [graph] setup_neuron_plot("Postsynaptic neuron", "Time (s)", "Membrane potential (V)") subplots_adjust(hspace = 0.33) while timeNow <= total_duration: timeNow = time() - startTime if stimulus_begin <= timeNow <= stimulus_end: n1.accumulate(np.random.normal(0.0035, 0.0005)) # TODO accumulate value based on deltaTime (since last accumulate) n1.update(timeNow) #print n1.id, n1.timeCurrent, n1.potential # [log: potential] n2.update(timeNow) #print n2.id, n2.timeCurrent, n2.potential # [log: potential] subplot(211) # [graph] n1.plot() # [graph] subplot(212) # [graph] n2.plot() # [graph] pause(delay) # [graph] #sleep(delay) if holdPlots: show() # [graph]