def test_calc_data_fast_uint8(): data = da.random.randint( 0, 100, size=(100_000, 1000, 1000), chunks=(1, 1000, 1000), dtype=np.uint8, ) assert calc_data_range(data) == [0, 255]
def test_calc_data_range(): # all zeros should return [0, 1] by default data = np.zeros((10, 10)) clim = calc_data_range(data) assert np.all(clim == [0, 1]) # all ones should return [0, 1] by default data = np.ones((10, 10)) clim = calc_data_range(data) assert np.all(clim == [0, 1]) # return min and max data = np.random.random((10, 15)) data[0, 0] = 0 data[0, 1] = 2 clim = calc_data_range(data) assert np.all(clim == [0, 2]) # return min and max data = np.random.random((6, 10, 15)) data[0, 0, 0] = 0 data[0, 0, 1] = 2 clim = calc_data_range(data) assert np.all(clim == [0, 2]) # Try large data data = np.zeros((1000, 2000)) data[0, 0] = 0 data[0, 1] = 2 clim = calc_data_range(data) assert np.all(clim == [0, 2]) # Try large data mutlidimensional data = np.zeros((3, 1000, 1000)) data[0, 0, 0] = 0 data[0, 0, 1] = 2 clim = calc_data_range(data) assert np.all(clim == [0, 2])
def test_calc_data_range_fast_big(): val = calc_data_range(data_dask) assert len(val) > 0
def test_calc_data_range_fast_big(): data = da.random.random(size=(100_000, 1000, 1000), chunks=(1, 1000, 1000)) t0 = time.time() _ = calc_data_range(data) t1 = time.time() assert t1 - t0 < 2