def __init__(self, _bias_): self.debug = 1 if self.debug == 1: print "" print("Ejecutando " + self.__class__.__name__) + "...\n" self.__neuron_0 = nas.neuron(_bias_) self.__neuron_1 = nas.neuron(_bias_) self.__neuron_2 = nas.neuron(_bias_) self.__bias = int(_bias_) self.__base_pattern = [] for base_pattern in range(16): self.__base_pattern.append(0)
def __init__(self, _bias_): self.debug = 1 if self.debug == 1: print "\n" print "" print("Ejecutando " + self.__class__.__name__) + "..." self.__neuron = nas.neuron(int(_bias_)) self.__bias = int(_bias_)
def _layer_1_1_(_neuron, _idnas, _learn): def neuron_0(): _neuron.rst_sign_() _neuron.ibn_(0, 0, int(_learn[0])) _neuron.ibn_(0, 1, int(_learn[1])) _neuron.ibn_(1, 0, int(_learn[2])) _neuron.ibn_(1, 1, int(_learn[3])) __rst_sign = { 0: neuron_0, } __rst_sign[int(_idnas)]() #Capa neuronal -2 neuronas- n1 = nas.neuron(1) n2 = nas.neuron(2) def _layer_2_1(id_nas, _learn_): def neuron_1(): n1.rst_sign_() n1.ibn_(0, 0, int(_learn_[0])) n1.ibn_(0, 1, int(_learn_[1])) n1.ibn_(1, 0, int(_learn_[2])) n1.ibn_(1, 1, int(_learn_[3])) def neuron_2(): n2.rst_sign_() n2.ibn_(0, 0, int(_learn_[0]))
__learn = { 0: s0, 1: s1, 2: s2, 3: s3, 4: s4, 5: s5, } __learn[int(id_mode)]() return _learn_ #Layer neuronal -0- In #---------------------------------------------------------------------------------------------------------------------------------------------------------- n0 = nas.neuron(0) n1 = nas.neuron(1) n2 = nas.neuron(2) n3 = nas.neuron(3) def layer_0(id_nas, _learn_): def neuron_0(): n0.rst_sign_() n0.ibn_(0, 0, int(_learn_[0])) n0.ibn_(0, 1, int(_learn_[1])) n0.ibn_(1, 0, int(_learn_[2])) n0.ibn_(1, 1, int(_learn_[3])) def neuron_1(): n1.rst_sign_()