Exemple #1
0
    def __init__(self):
        model.InVESTModel.__init__(
            self,
            label=MODEL_METADATA['coastal_blue_carbon'].model_title,
            target=coastal_blue_carbon.execute,
            validator=coastal_blue_carbon.validate,
            localdoc=MODEL_METADATA['coastal_blue_carbon'].userguide)

        _ui_keys = functools.partial(_create_input_kwargs_from_args_spec,
                                     args_spec=coastal_blue_carbon.ARGS_SPEC,
                                     validator=self.validator)

        self.snapshots_table = inputs.File(
            **_ui_keys('landcover_snapshot_csv'))
        self.add_input(self.snapshots_table)

        self.biophysical_table_path = inputs.File(
            **_ui_keys('biophysical_table_path'))
        self.add_input(self.biophysical_table_path)

        self.landcover_transitions_table = inputs.File(
            **_ui_keys('landcover_transitions_table'))
        self.add_input(self.landcover_transitions_table)

        self.analysis_year = inputs.Text(**_ui_keys('analysis_year'))
        self.add_input(self.analysis_year)

        self.do_economic_analysis = inputs.Container(
            args_key='do_economic_analysis',
            expandable=True,
            expanded=True,
            label='Calculate Net Present Value of Sequestered Carbon')
        self.add_input(self.do_economic_analysis)

        self.use_price_table = inputs.Checkbox(args_key='use_price_table',
                                               helptext='',
                                               label='Use Price Table')
        self.do_economic_analysis.add_input(self.use_price_table)
        self.price = inputs.Text(**_ui_keys('price'))
        self.do_economic_analysis.add_input(self.price)

        self.inflation_rate = inputs.Text(**_ui_keys('inflation_rate'))
        self.do_economic_analysis.add_input(self.inflation_rate)

        self.price_table_path = inputs.File(**_ui_keys('price_table_path'))
        self.do_economic_analysis.add_input(self.price_table_path)

        self.discount_rate = inputs.Text(**_ui_keys('discount_rate'))
        self.do_economic_analysis.add_input(self.discount_rate)

        # Set interactivity, requirement as input sufficiency changes
        self.use_price_table.sufficiency_changed.connect(
            self._price_table_sufficiency_changed)
Exemple #2
0
    def __init__(self):
        model.InVESTModel.__init__(
            self,
            label=MODEL_METADATA['fisheries_hst'].model_title,
            target=fisheries_hst.execute,
            validator=fisheries_hst.validate,
            localdoc=MODEL_METADATA['fisheries_hst'].userguide)

        self.alpha_only = inputs.Label(
            text=("This tool is in an ALPHA testing stage and should "
                  "not be used for decision making."))
        self.pop_cont = inputs.Container(args_key='pop_cont',
                                         expanded=True,
                                         label='Population Parameters')
        self.add_input(self.pop_cont)
        self.population_csv_path = inputs.File(
            args_key='population_csv_path',
            helptext=("A CSV file containing all necessary attributes for "
                      "population classes based on age/stage, sex, and area "
                      "- excluding possible migration "
                      "information.<br><br>See the 'Running the Model >> "
                      "Core Model >> Population Parameters' section in the "
                      "model's documentation for help on how to format this "
                      "file."),
            label='Population Parameters File (CSV)',
            validator=self.validator)
        self.pop_cont.add_input(self.population_csv_path)
        self.sexsp = inputs.Dropdown(
            args_key='sexsp',
            helptext=("Specifies whether or not the population classes "
                      "provided in the Populaton Parameters CSV file are "
                      "distinguished by sex."),
            label='Population Classes are Sex-Specific',
            options=['No', 'Yes'])
        self.pop_cont.add_input(self.sexsp)
        self.hab_cont = inputs.Container(args_key='hab_cont',
                                         expanded=True,
                                         label='Habitat Parameters')
        self.add_input(self.hab_cont)
        self.habitat_csv_dep_path = inputs.File(
            args_key='habitat_dep_csv_path',
            helptext=("A CSV file containing the habitat dependencies (0-1) "
                      "for each life stage or age and for each habitat type "
                      "included in the Habitat Change CSV File.<br><br>See "
                      "the 'Running the Model >> Habitat Scenario Tool >> "
                      "Habitat Parameters' section in the model's "
                      "documentation for help on how to format this file."),
            label='Habitat Dependency Parameters File (CSV)',
            validator=self.validator)
        self.hab_cont.add_input(self.habitat_csv_dep_path)
        self.habitat_chg_csv_path = inputs.File(
            args_key='habitat_chg_csv_path',
            helptext=("A CSV file containing the percent changes in habitat "
                      "area by subregion (if applicable). The habitats "
                      "included should be those which the population depends "
                      "on at any life stage.<br><br>See the 'Running the "
                      "Model >> Habitat Scenario Tool >> Habitat Parameters' "
                      "section in the model's documentation for help on how "
                      "to format this file."),
            label='Habitat Area Change File (CSV)',
            validator=self.validator)
        self.hab_cont.add_input(self.habitat_chg_csv_path)
        self.gamma = inputs.Text(
            args_key='gamma',
            helptext=("Gamma describes the relationship between a change in "
                      "habitat area and a change in survival of life stages "
                      "dependent on that habitat.  Specify a value between 0 "
                      "and 1.<br><br>See the documentation for advice on "
                      "selecting a gamma value."),
            label='Gamma',
            validator=self.validator)
        self.hab_cont.add_input(self.gamma)
Exemple #3
0
    def __init__(self):
        model.InVESTModel.__init__(
            self,
            label=u'InVEST Carbon Model',
            target=natcap.invest.carbon.execute,
            validator=natcap.invest.carbon.validate,
            localdoc=u'../documentation/carbonstorage.html')

        self.cur_lulc_raster = inputs.File(
            args_key=u'lulc_cur_path',
            helptext=(u"A GDAL-supported raster representing the land-cover "
                      u"of the current scenario."),
            label=u'Current Land Use/Land Cover (Raster)',
            validator=self.validator)
        self.add_input(self.cur_lulc_raster)
        self.carbon_pools_path = inputs.File(
            args_key=u'carbon_pools_path',
            helptext=(u"A table that maps the land-cover IDs to carbon "
                      u"pools.  The table must contain columns of 'LULC', "
                      u"'C_above', 'C_Below', 'C_Soil', 'C_Dead' as described "
                      u"in the User's Guide.  The values in LULC must at "
                      u"least include the LULC IDs in the land cover maps."),
            label=u'Carbon Pools',
            validator=self.validator)
        self.add_input(self.carbon_pools_path)
        self.cur_lulc_year = inputs.Text(
            args_key=u'lulc_cur_year',
            helptext=u'The calendar year of the current scenario.',
            interactive=False,
            label=u'Current Landcover Calendar Year',
            validator=self.validator)
        self.add_input(self.cur_lulc_year)
        self.calc_sequestration = inputs.Checkbox(
            helptext=(u"Check to enable sequestration analysis.  This "
                      u"requires inputs of Land Use/Land Cover maps for both "
                      u"current and future scenarios."),
            args_key='calc_sequestration',
            label=u'Calculate Sequestration')
        self.add_input(self.calc_sequestration)
        self.fut_lulc_raster = inputs.File(
            args_key=u'lulc_fut_path',
            helptext=(u"A GDAL-supported raster representing the land-cover "
                      u"of the future scenario.  <br><br>If REDD scenario "
                      u"analysis is enabled, this should be the reference, or "
                      u"baseline, future scenario against which to compare "
                      u"the REDD policy scenario."),
            interactive=False,
            label=u'Future Landcover (Raster)',
            validator=self.validator)
        self.add_input(self.fut_lulc_raster)
        self.fut_lulc_year = inputs.Text(
            args_key=u'lulc_fut_year',
            helptext=u'The calendar year of the future scenario.',
            interactive=False,
            label=u'Future Landcover Calendar Year',
            validator=self.validator)
        self.add_input(self.fut_lulc_year)
        self.redd = inputs.Checkbox(
            helptext=(u"Check to enable REDD scenario analysis.  This "
                      u"requires three Land Use/Land Cover maps: one for the "
                      u"current scenario, one for the future baseline "
                      u"scenario, and one for the future REDD policy "
                      u"scenario."),
            interactive=False,
            args_key='do_redd',
            label=u'REDD Scenario Analysis')
        self.add_input(self.redd)
        self.redd_lulc_raster = inputs.File(
            args_key=u'lulc_redd_path',
            helptext=(u"A GDAL-supported raster representing the land-cover "
                      u"of the REDD policy future scenario.  This scenario "
                      u"will be compared to the baseline future scenario."),
            interactive=False,
            label=u'REDD Policy (Raster)',
            validator=self.validator)
        self.add_input(self.redd_lulc_raster)
        self.valuation_container = inputs.Container(
            args_key=u'do_valuation',
            expandable=True,
            expanded=False,
            interactive=False,
            label=u'Run Valuation Model')
        self.add_input(self.valuation_container)
        self.price_per_metric_ton_of_c = inputs.Text(
            args_key=u'price_per_metric_ton_of_c',
            label=u'Price/Metric ton of carbon',
            validator=self.validator)
        self.valuation_container.add_input(self.price_per_metric_ton_of_c)
        self.discount_rate = inputs.Text(
            args_key=u'discount_rate',
            helptext=u'The discount rate as a floating point percent.',
            label=u'Market Discount in Price of Carbon (%)',
            validator=self.validator)
        self.valuation_container.add_input(self.discount_rate)
        self.rate_change = inputs.Text(
            args_key=u'rate_change',
            helptext=(u"The floating point percent increase of the price of "
                      u"carbon per year."),
            label=u'Annual Rate of Change in Price of Carbon (%)',
            validator=self.validator)
        self.valuation_container.add_input(self.rate_change)

        # Set interactivity, requirement as input sufficiency changes
        self.calc_sequestration.sufficiency_changed.connect(
            self.cur_lulc_year.set_interactive)
        self.calc_sequestration.sufficiency_changed.connect(
            self.fut_lulc_raster.set_interactive)
        self.calc_sequestration.sufficiency_changed.connect(
            self.fut_lulc_year.set_interactive)
        self.calc_sequestration.sufficiency_changed.connect(
            self.redd.set_interactive)
        self.redd.sufficiency_changed.connect(
            self.redd_lulc_raster.set_interactive)
        self.calc_sequestration.sufficiency_changed.connect(
            self.valuation_container.set_interactive)
Exemple #4
0
    def __init__(self):
        model.InVESTModel.__init__(
            self,
            label='Habitat Risk Assessment Preprocessor',
            target=hra_preprocessor.execute,
            validator=hra_preprocessor.validate,
            localdoc='../documentation/habitat_risk_assessment.html')

        self.habs_dir = inputs.File(
            args_key='habitats_dir',
            helptext=(
                "Checking this box indicates that habitats should be "
                "used as a base for overlap with provided stressors. "
                "If checked, the path to the habitat layers folder "
                "must be provided."),
            hideable=True,
            label='Calculate Risk to Habitats?',
            validator=self.validator)
        self.add_input(self.habs_dir)
        self.species_dir = inputs.File(
            args_key='species_dir',
            helptext=(
                "Checking this box indicates that species should be "
                "used as a base for overlap with provided stressors. "
                "If checked, the path to the species layers folder "
                "must be provided."),
            hideable=True,
            label='Calculate Risk to Species?',
            validator=self.validator)
        self.add_input(self.species_dir)
        self.stressor_dir = inputs.Folder(
            args_key='stressors_dir',
            helptext='This is the path to the stressors layers folder.',
            label='Stressors Layers Folder',
            validator=self.validator)
        self.add_input(self.stressor_dir)
        self.cur_lulc_box = inputs.Container(
            expandable=False,
            label='Criteria')
        self.add_input(self.cur_lulc_box)
        self.help_label = inputs.Label(
            text=(
                "(Choose at least 1 criteria for each category below, "
                "and at least 4 total.)"))
        self.exp_crit = inputs.Multi(
            args_key='exposure_crits',
            callable_=functools.partial(inputs.Text, label="Input Criteria"),
            label='Exposure',
            link_text='Add Another')
        self.cur_lulc_box.add_input(self.exp_crit)
        self.sens_crit = inputs.Multi(
            args_key='sensitivity_crits',
            callable_=functools.partial(inputs.Text, label="Input Criteria"),
            label='Consequence: Sensitivity',
            link_text='Add Another')
        self.cur_lulc_box.add_input(self.sens_crit)
        self.res_crit = inputs.Multi(
            args_key='resilience_crits',
            callable_=functools.partial(inputs.Text, label="Input Criteria"),
            label='Consequence: Resilience',
            link_text='Add Another')
        self.cur_lulc_box.add_input(self.res_crit)
        self.crit_dir = inputs.File(
            args_key='criteria_dir',
            helptext=(
                "Checking this box indicates that model should use "
                "criteria from provided shapefiles.  Each shapefile in "
                "the folder directories will need to contain a "
                "'Rating' attribute to be used for calculations in the "
                "HRA model.  Refer to the HRA User's Guide for "
                "information about the MANDATORY layout of the "
                "shapefile directories."),
            hideable=True,
            label='Use Spatially Explicit Risk Score in Shapefiles',
            validator=self.validator)
        self.add_input(self.crit_dir)
Exemple #5
0
    def __init__(self):
        model.InVESTModel.__init__(self,
                                   label='Wind Energy',
                                   target=wind_energy.execute,
                                   validator=wind_energy.validate,
                                   localdoc='wind_energy.html',
                                   suffix_args_key='suffix')

        self.wind_data = inputs.File(
            args_key='wind_data_path',
            helptext=("A CSV file that represents the wind input data "
                      "(Weibull parameters). Please see the User's Guide for "
                      "a more detailed description of the parameters."),
            label='Wind Data Points (CSV)',
            validator=self.validator)
        self.add_input(self.wind_data)
        self.aoi = inputs.File(
            args_key='aoi_vector_path',
            helptext=("Optional.  An OGR-supported vector file containing a "
                      "single polygon defining the area of interest.  The "
                      "AOI must be projected with linear units equal to "
                      "meters.  If the AOI is provided it will clip and "
                      "project the outputs to that of the AOI. The Distance "
                      "inputs are dependent on the AOI and will only be "
                      "accessible if the AOI is selected.  If the AOI is "
                      "selected and the Distance parameters are selected, "
                      "then the AOI should also cover a portion of the land "
                      "polygon to calculate distances correctly.  An AOI is "
                      "required for valuation."),
            label='Area Of Interest (Vector) (Optional)',
            validator=self.validator)
        self.add_input(self.aoi)
        self.bathymetry = inputs.File(
            args_key='bathymetry_path',
            helptext=("A GDAL-supported raster file containing elevation "
                      "values represented in meters for the area of "
                      "interest.  The DEM should cover at least the entire "
                      "span of the area of interest and if no AOI is "
                      "provided then the default global DEM should be used."),
            label='Bathymetric Digital Elevation Model (Raster)',
            validator=self.validator)
        self.add_input(self.bathymetry)
        self.land_polygon = inputs.File(
            args_key='land_polygon_vector_path',
            helptext=("An OGR-supported polygon vector that represents the "
                      "land and coastline that is of interest.  For this "
                      "input to be selectable the AOI must be selected.  The "
                      "AOI should also cover a portion of this land polygon "
                      "to properly calculate distances.  This coastal "
                      "polygon, and the area covered by the AOI, form the "
                      "basis for distance calculations for wind farm "
                      "electrical transmission.  This input is required for "
                      "masking by distance values and for valuation."),
            interactive=False,
            label='Land Polygon for Distance Calculation (Vector)',
            validator=self.validator)
        self.add_input(self.land_polygon)
        self.global_wind_parameters = inputs.File(
            args_key='global_wind_parameters_path',
            helptext=("A CSV file that holds wind energy model parameters "
                      "for both the biophysical and valuation modules. "
                      "These parameters are defaulted to values that are "
                      "supported and reviewed in the User's Guide.  It is "
                      "recommended that careful consideration be taken "
                      "before changing these values and to make a new CSV "
                      "file so that the default one always remains."),
            label='Global Wind Energy Parameters (CSV)',
            validator=self.validator)
        self.add_input(self.global_wind_parameters)
        self.turbine_group = inputs.Container(label='Turbine Properties')
        self.add_input(self.turbine_group)
        self.turbine_parameters = inputs.File(
            args_key='turbine_parameters_path',
            helptext=("A CSV file that contains parameters corresponding to "
                      "a specific turbine type.  The InVEST package comes "
                      "with two turbine model options, 3.6 MW and 5.0 MW. A "
                      "new turbine class may be created by using the "
                      "existing file format conventions and filling in new "
                      "parameters.  Likewise an existing class may be "
                      "modified according to the user's needs.  It is "
                      "recommended that the existing default CSV files are "
                      "not overwritten."),
            label='Turbine Type Parameters File (CSV)',
            validator=self.validator)
        self.turbine_group.add_input(self.turbine_parameters)
        self.number_of_machines = inputs.Text(
            args_key='number_of_turbines',
            helptext=("An integer value indicating the number of wind "
                      "turbines per wind farm."),
            label='Number Of Turbines',
            validator=self.validator)
        self.turbine_group.add_input(self.number_of_machines)
        self.min_depth = inputs.Text(
            args_key='min_depth',
            helptext=("A floating point value in meters for the minimum "
                      "depth of the offshore wind farm installation."),
            label='Minimum Depth for Offshore Wind Farm Installation (meters)',
            validator=self.validator)
        self.turbine_group.add_input(self.min_depth)
        self.max_depth = inputs.Text(
            args_key='max_depth',
            helptext=("A floating point value in meters for the maximum "
                      "depth of the offshore wind farm installation."),
            label='Maximum Depth for Offshore Wind Farm Installation (meters)',
            validator=self.validator)
        self.turbine_group.add_input(self.max_depth)
        self.min_distance = inputs.Text(
            args_key='min_distance',
            helptext=("A floating point value in meters that represents the "
                      "minimum distance from shore for offshore wind farm "
                      "installation.  Required for valuation."),
            interactive=False,
            label=('Minimum Distance for Offshore Wind Farm Installation '
                   '(meters)'),
            validator=self.validator)
        self.turbine_group.add_input(self.min_distance)
        self.max_distance = inputs.Text(
            args_key='max_distance',
            helptext=("A floating point value in meters that represents the "
                      "maximum distance from shore for offshore wind farm "
                      "installation.  Required for valuation."),
            interactive=False,
            label=('Maximum Distance for Offshore Wind Farm Installation '
                   '(meters)'),
            validator=self.validator)
        self.turbine_group.add_input(self.max_distance)
        self.valuation_container = inputs.Container(
            args_key='valuation_container',
            expandable=True,
            expanded=False,
            label='Valuation')
        self.add_input(self.valuation_container)
        self.foundation_cost = inputs.Text(
            args_key='foundation_cost',
            helptext=("A floating point number for the unit cost of the "
                      "foundation type (in millions of dollars). The cost of "
                      "a foundation will depend on the type selected, which "
                      "itself depends on a variety of factors including "
                      "depth and turbine choice.  Please see the User's "
                      "Guide for guidance on properly selecting this value."),
            label='Cost of the Foundation Type (USD, in Millions)',
            validator=self.validator)
        self.valuation_container.add_input(self.foundation_cost)
        self.discount_rate = inputs.Text(
            args_key='discount_rate',
            helptext=("The discount rate reflects preferences for immediate "
                      "benefits over future benefits (e.g., would an "
                      "individual rather receive $10 today or $10 five years "
                      "from now?). See the User's Guide for guidance on "
                      "selecting this value."),
            label='Discount Rate',
            validator=self.validator)
        self.valuation_container.add_input(self.discount_rate)
        self.grid_points = inputs.File(
            args_key='grid_points_path',
            helptext=("An optional CSV file with grid and land points to "
                      "determine cable distances from.  An example:<br/> "
                      "<table border='1'> <tr> <th>ID</th> <th>TYPE</th> "
                      "<th>LATI</th> <th>LONG</th> </tr> <tr> <td>1</td> "
                      "<td>GRID</td> <td>42.957</td> <td>-70.786</td> </tr> "
                      "<tr> <td>2</td> <td>LAND</td> <td>42.632</td> "
                      "<td>-71.143</td> </tr> <tr> <td>3</td> <td>LAND</td> "
                      "<td>41.839</td> <td>-70.394</td> </tr> </table> "
                      "<br/><br/>Each point location is represented as a "
                      "single row with columns being <b>ID</b>, <b>TYPE</b>, "
                      "<b>LATI</b>, and <b>LONG</b>. The <b>LATI</b> and "
                      "<b>LONG</b> columns indicate the coordinates for the "
                      "point.  The <b>TYPE</b> column relates to whether it "
                      "is a land or grid point.  The <b>ID</b> column is a "
                      "simple unique integer.  The shortest distance between "
                      "respective points is used for calculations.  See the "
                      "User's Guide for more information."),
            label='Grid Connection Points (Optional)',
            validator=self.validator)
        self.valuation_container.add_input(self.grid_points)
        self.avg_grid_dist = inputs.Text(
            args_key='avg_grid_distance',
            helptext=("<b>Always required, but NOT used in the model if "
                      "Grid Points provided</b><br/><br/>A number in "
                      "kilometres that is only used if grid points are NOT "
                      "used in valuation.  When running valuation using the "
                      "land polygon to compute distances, the model uses an "
                      "average distance to the onshore grid from coastal "
                      "cable landing points instead of specific grid "
                      "connection points.  See the User's Guide for a "
                      "description of the approach and the method used to "
                      "calculate the default value."),
            label='Average Shore to Grid Distance (Kilometers)',
            validator=self.validator)
        self.valuation_container.add_input(self.avg_grid_dist)
        self.price_table = inputs.Checkbox(
            args_key='price_table',
            helptext=("When checked the model will use the social cost of "
                      "wind energy table provided in the input below.  If "
                      "not checked the price per year will be determined "
                      "using the price of energy input and the annual rate "
                      "of change."),
            label='Use Price Table')
        self.valuation_container.add_input(self.price_table)
        self.wind_schedule = inputs.File(
            args_key='wind_schedule',
            helptext=("A CSV file that has the price of wind energy per "
                      "kilowatt hour for each year of the wind farms life. "
                      "The CSV file should have the following two "
                      "columns:<br/><br/><b>Year:</b> a set of integers "
                      "indicating each year for the lifespan of the wind "
                      "farm.  They can be in date form such as : 2010, 2011, "
                      "2012... OR simple time step integers such as : 0, 1, "
                      "2... <br/><br/><b>Price:</b> a set of floats "
                      "indicating the price of wind energy per kilowatt hour "
                      "for a particular year or time step in the wind farms "
                      "life.<br/><br/>An example:<br/> <table border='1'> "
                      "<tr><th>Year</th> <th>Price</th></tr><tr><td>0</td><t "
                      "d>.244</td></tr><tr><td>1</td><td>.255</td></tr><tr>< "
                      "td>2</td><td>.270</td></tr><tr><td>3</td><td>.275</td "
                      "></tr><tr><td>4</td><td>.283</td></tr><tr><td>5</td>< "
                      "td>.290</td></tr></table><br/><br/><b>NOTE:</b> The "
                      "number of years or time steps listed must match the "
                      "<b>time</b> parameter in the <b>Global Wind Energy "
                      "Parameters</b> input file above.  In the above "
                      "example we have 6 years for the lifetime of the farm, "
                      "year 0 being a construction year and year 5 being the "
                      "last year."),
            interactive=False,
            label='Wind Energy Price Table (CSV)',
            validator=self.validator)
        self.valuation_container.add_input(self.wind_schedule)
        self.wind_price = inputs.Text(
            args_key='wind_price',
            helptext=("The price of energy per kilowatt hour.  This is the "
                      "price that will be used for year or time step 0 and "
                      "will then be adjusted based on the rate of change "
                      "percentage from the input below.  See the User's "
                      "Guide for guidance about determining this value."),
            label='Price of Energy per Kilowatt Hour ($/kWh)',
            validator=self.validator)
        self.valuation_container.add_input(self.wind_price)
        self.rate_change = inputs.Text(
            args_key='rate_change',
            helptext=("The annual rate of change in the price of wind "
                      "energy.  This should be expressed as a decimal "
                      "percentage.  For example, 0.1 for a 10% annual price "
                      "change."),
            label='Annual Rate of Change in Price of Wind Energy',
            validator=self.validator)
        self.valuation_container.add_input(self.rate_change)

        # Set interactivity, requirement as input sufficiency changes
        self.aoi.sufficiency_changed.connect(self.land_polygon.set_interactive)
        self.land_polygon.sufficiency_changed.connect(
            self.min_distance.set_interactive)
        self.land_polygon.sufficiency_changed.connect(
            self.max_distance.set_interactive)
        self.price_table.sufficiency_changed.connect(
            self._toggle_price_options)
    def __init__(self):
        model.InVESTModel.__init__(
            self,
            label='Scenario Generator',
            target=natcap.invest.scenario_generator.scenario_generator.execute,
            validator=natcap.invest.scenario_generator.scenario_generator.
            validate,
            localdoc='../documentation/scenario_generator.html',
            suffix_args_key='suffix',
        )
        self.landcover = inputs.File(
            args_key='landcover',
            helptext=
            'A GDAL-supported raster file representing land-use/land-cover.',
            label='Land Cover (Raster)',
            validator=self.validator)
        self.add_input(self.landcover)
        self.transition = inputs.File(
            args_key='transition',
            helptext=("This table contains the land-cover transition "
                      "likelihoods, priority of transitions, area change, "
                      "proximity suitiblity, proximity effect distance, seed "
                      "size, short name, and patch size."),
            label='Transition Table (CSV)',
            validator=self.validator)
        self.add_input(self.transition)
        self.calculate_priorities = inputs.Checkbox(
            args_key='calculate_priorities',
            helptext=("This option enables calculation of the land-cover "
                      "priorities using analytical hierarchical processing. "
                      "A matrix table must be entered below.  Optionally, "
                      "the priorities can manually be entered in the "
                      "priority column of the land attributes table."),
            interactive=False,
            label='Calculate Priorities')
        self.add_input(self.calculate_priorities)
        self.priorities_csv_uri = inputs.File(
            args_key='priorities_csv_uri',
            helptext=("This table contains a matrix of land-cover type "
                      "pairwise priorities used to calculate land-cover "
                      "priorities."),
            interactive=False,
            label='Priorities Table (CSV)',
            validator=self.validator)
        self.add_input(self.priorities_csv_uri)
        self.calculate_proximity = inputs.Container(
            args_key='calculate_proximity',
            expandable=True,
            expanded=True,
            label='Proximity')
        self.add_input(self.calculate_proximity)
        self.calculate_transition = inputs.Container(
            args_key='calculate_transition',
            expandable=True,
            expanded=True,
            label='Specify Transitions')
        self.add_input(self.calculate_transition)
        self.calculate_factors = inputs.Container(args_key='calculate_factors',
                                                  expandable=True,
                                                  expanded=True,
                                                  label='Use Factors')
        self.add_input(self.calculate_factors)
        self.suitability_folder = inputs.Folder(args_key='suitability_folder',
                                                label='Factors Folder',
                                                validator=self.validator)
        self.calculate_factors.add_input(self.suitability_folder)
        self.suitability = inputs.File(
            args_key='suitability',
            helptext=("This table lists the factors that determine "
                      "suitability of the land-cover for change, and "
                      "includes: the factor name, layer name, distance of "
                      "influence, suitability value, weight of the factor, "
                      "distance breaks, and applicable land-cover."),
            label='Factors Table',
            validator=self.validator)
        self.calculate_factors.add_input(self.suitability)
        self.weight = inputs.Text(
            args_key='weight',
            helptext=("The factor weight is a value between 0 and 1 which "
                      "determines the weight given to the factors vs.  the "
                      "expert opinion likelihood rasters.  For example, if a "
                      "weight of 0.3 is entered then 30% of the final "
                      "suitability is contributed by the factors and the "
                      "likelihood matrix contributes 70%.  This value is "
                      "entered on the tool interface."),
            label='Factor Weight',
            validator=self.validator)
        self.calculate_factors.add_input(self.weight)
        self.factor_inclusion = inputs.Dropdown(
            args_key='factor_inclusion',
            helptext='',
            interactive=False,
            label='Rasterization Method',
            options=[
                'All touched pixels', 'Only pixels with covered center points'
            ])
        self.calculate_factors.add_input(self.factor_inclusion)
        self.calculate_constraints = inputs.Container(
            args_key='calculate_constraints',
            expandable=True,
            label='Constraints Layer')
        self.add_input(self.calculate_constraints)
        self.constraints = inputs.File(
            args_key='constraints',
            helptext=("An OGR-supported vector file.  This is a vector "
                      "layer which indicates the parts of the landscape that "
                      "are protected of have constraints to land-cover "
                      "change.  The layer should have one field named "
                      "'porosity' with a value between 0 and 1 where 0 means "
                      "its fully protected and 1 means its fully open to "
                      "change."),
            label='Constraints Layer (Vector)',
            validator=self.validator)
        self.calculate_constraints.add_input(self.constraints)
        self.constraints.sufficiency_changed.connect(
            self._load_colnames_constraints)
        self.constraints_field = inputs.Dropdown(
            args_key='constraints_field',
            helptext=("The field from the override table that contains the "
                      "value for the override."),
            interactive=False,
            options=('UNKNOWN', ),
            label='Constraints Field')
        self.calculate_constraints.add_input(self.constraints_field)
        self.override_layer = inputs.Container(args_key='override_layer',
                                               expandable=True,
                                               expanded=True,
                                               label='Override Layer')
        self.add_input(self.override_layer)
        self.override = inputs.File(
            args_key='override',
            helptext=("An OGR-supported vector file.  This is a vector "
                      "(polygon) layer with land-cover types in the same "
                      "scale and projection as the input land-cover.  This "
                      "layer is used to override all the changes and is "
                      "applied after the rule conversion is complete."),
            label='Override Layer (Vector)',
            validator=self.validator)
        self.override_layer.add_input(self.override)
        self.override.sufficiency_changed.connect(self._load_colnames_override)
        self.override_field = inputs.Dropdown(
            args_key='override_field',
            helptext=("The field from the override table that contains the "
                      "value for the override."),
            interactive=False,
            options=('UNKNOWN', ),
            label='Override Field')
        self.override_layer.add_input(self.override_field)
        self.override_inclusion = inputs.Dropdown(
            args_key='override_inclusion',
            helptext='',
            interactive=False,
            label='Rasterization Method',
            options=[
                'All touched pixels', 'Only pixels with covered center points'
            ])
        self.override_layer.add_input(self.override_inclusion)
        self.seed = inputs.Text(
            args_key='seed',
            helptext=("Seed must be an integer or blank.  <br/><br/>Under "
                      "normal conditions, parcels with the same suitability "
                      "are picked in a random order.  Setting the seed value "
                      "allows the scenario generator to randomize the order "
                      "in which parcels are picked, but two runs with the "
                      "same seed will pick parcels in the same order."),
            label='Seed for random parcel selection (optional)',
            validator=self.validator)
        self.add_input(self.seed)

        # Set interactivity, requirement as input sufficiency changes
        self.transition.sufficiency_changed.connect(
            self.calculate_priorities.set_interactive)
        self.calculate_priorities.sufficiency_changed.connect(
            self.priorities_csv_uri.set_interactive)
        self.calculate_factors.sufficiency_changed.connect(
            self.factor_inclusion.set_interactive)
        self.constraints.sufficiency_changed.connect(
            self.constraints_field.set_interactive)
        self.override.sufficiency_changed.connect(
            self.override_field.set_interactive)
        self.override_field.sufficiency_changed.connect(
            self.override_inclusion.set_interactive)
Exemple #7
0
    def __init__(self):
        model.InVESTModel.__init__(
            self,
            label=MODEL_METADATA['delineateit'].model_title,
            target=delineateit.execute,
            validator=delineateit.validate,
            localdoc=MODEL_METADATA['delineateit'].userguide)

        self.dem_path = inputs.File(
            label='Digital Elevation Model (Raster)',
            args_key='dem_path',
            helptext=("A GDAL-supported raster file with an elevation value "
                      "for each cell."),
            validator=self.validator)
        self.add_input(self.dem_path)

        self.detect_pour_points = inputs.Checkbox(
            args_key='detect_pour_points',
            helptext=(
                'If this box is checked, run pour point detection algorithm. '
                'Use detected pour points instead of outlet geometries.'),
            label='Detect pour points')
        self.add_input(self.detect_pour_points)
        self.detect_pour_points.sufficiency_changed.connect(
            self.on_detect_pour_points_changed)

        self.outlet_vector_path = inputs.File(
            args_key='outlet_vector_path',
            helptext=("This is a layer of geometries representing watershed "
                      "outlets such as municipal water intakes or lakes."),
            label='Outlet Features (Vector)',
            validator=self.validator)
        self.add_input(self.outlet_vector_path)
        self.skip_invalid_geometry = inputs.Checkbox(
            args_key='skip_invalid_geometry',
            helptext=(
                'If this box is checked, any invalid geometries encountered '
                'in the outlet vector will not be included in the '
                'delineation.  If this box is unchecked, an invalid '
                'geometry will cause DelineateIt to error.'),
            label='Skip invalid geometries')
        self.add_input(self.skip_invalid_geometry)
        self.skip_invalid_geometry.set_value(True)

        self.snap_points_container = inputs.Container(
            label='Snap points to the nearest stream',
            expandable=True,
            expanded=False,
            args_key='snap_points')
        self.add_input(self.snap_points_container)
        self.flow_threshold = inputs.Text(
            args_key='flow_threshold',
            helptext=("The number of upstream cells that must flow into a "
                      "cell before it's considered part of a stream such "
                      "that retention stops and the remaining export is "
                      "exported to the stream.  Used to define streams from "
                      "the DEM."),
            label='Threshold Flow Accumulation',
            validator=self.validator)
        self.snap_points_container.add_input(self.flow_threshold)
        self.snap_distance = inputs.Text(
            args_key='snap_distance',
            label='Pixel Distance to Snap Outlet Points',
            helptext=(
                "If provided, the maximum search radius in pixels to look "
                "for stream pixels.  If a stream pixel is found within the "
                "snap distance, the outflow point will be snapped to the "
                "center of the nearest stream pixel.  Geometries that are "
                "not points (such as Lines and Polygons) will not be "
                "snapped.  MultiPoints will also not be snapped."),
            validator=self.validator)
        self.snap_points_container.add_input(self.snap_distance)
    def __init__(self):
        model.InVESTModel.__init__(
            self,
            label='Seasonal Water Yield',
            target=seasonal_water_yield.execute,
            validator=seasonal_water_yield.validate,
            localdoc='../documentation/seasonalwateryield.html')

        self.threshold_flow_accumulation = inputs.Text(
            args_key='threshold_flow_accumulation',
            helptext=("The number of upstream cells that must flow into a "
                      "cell before it's considered part of a stream such "
                      "that retention stops and the remaining export is "
                      "exported to the stream.  Used to define streams from "
                      "the DEM."),
            label='Threshold Flow Accumulation',
            validator=self.validator)
        self.add_input(self.threshold_flow_accumulation)
        self.et0_dir = inputs.Folder(
            args_key='et0_dir',
            helptext=("The selected folder has a list of ET0 files with a "
                      "specified format."),
            label='ET0 Directory',
            validator=self.validator)
        self.add_input(self.et0_dir)
        self.precip_dir = inputs.Folder(
            args_key='precip_dir',
            helptext=("The selected folder has a list of monthly "
                      "precipitation files with a specified format."),
            label='Precipitation Directory',
            validator=self.validator)
        self.add_input(self.precip_dir)
        self.dem_raster_path = inputs.File(
            args_key='dem_raster_path',
            helptext=("A GDAL-supported raster file with an elevation value "
                      "for each cell.  Make sure the DEM is corrected by "
                      "filling in sinks, and if necessary burning "
                      "hydrographic features into the elevation model "
                      "(recommended when unusual streams are observed.) See "
                      "the 'Working with the DEM' section of the InVEST "
                      "User's Guide for more information."),
            label='Digital Elevation Model (Raster)',
            validator=self.validator)
        self.add_input(self.dem_raster_path)
        self.lulc_raster_path = inputs.File(
            args_key='lulc_raster_path',
            helptext=("A GDAL-supported raster file, with an integer LULC "
                      "code for each cell."),
            label='Land-Use/Land-Cover (Raster)',
            validator=self.validator)
        self.add_input(self.lulc_raster_path)
        self.soil_group_path = inputs.File(
            args_key='soil_group_path',
            helptext=("Map of SCS soil groups (A, B, C, or D) mapped to "
                      "integer values (1, 2, 3, or 4) used in combination of "
                      "the LULC map to compute the CN map."),
            label='Soil Group (Raster)',
            validator=self.validator)
        self.add_input(self.soil_group_path)
        self.aoi_path = inputs.File(args_key='aoi_path',
                                    label='AOI/Watershed (Vector)',
                                    validator=self.validator)
        self.add_input(self.aoi_path)
        self.biophysical_table_path = inputs.File(
            args_key='biophysical_table_path',
            helptext=("A CSV table containing model information "
                      "corresponding to each of the land use classes in the "
                      "LULC raster input.  It must contain the fields "
                      "'lucode', and 'Kc'."),
            label='Biophysical Table (CSV)',
            validator=self.validator)
        self.add_input(self.biophysical_table_path)
        self.rain_events_table_path = inputs.File(
            args_key='rain_events_table_path',
            label='Rain Events Table (CSV)',
            validator=self.validator)
        self.add_input(self.rain_events_table_path)
        self.alpha_m = inputs.Text(args_key='alpha_m',
                                   label='alpha_m Parameter',
                                   validator=self.validator)
        self.add_input(self.alpha_m)
        self.beta_i = inputs.Text(args_key='beta_i',
                                  label='beta_i Parameter',
                                  validator=self.validator)
        self.add_input(self.beta_i)
        self.gamma = inputs.Text(args_key='gamma',
                                 label='gamma Parameter',
                                 validator=self.validator)
        self.add_input(self.gamma)
        self.climate_zone_container = inputs.Container(
            args_key='user_defined_climate_zones',
            expandable=True,
            label='Climate Zones (Advanced)')
        self.add_input(self.climate_zone_container)
        self.climate_zone_table_path = inputs.File(
            args_key='climate_zone_table_path',
            label='Climate Zone Table (CSV)',
            validator=self.validator)
        self.climate_zone_container.add_input(self.climate_zone_table_path)
        self.climate_zone_raster_path = inputs.File(
            args_key='climate_zone_raster_path',
            helptext=("Map of climate zones that are found in the Climate "
                      "Zone Table input.  Pixel values correspond to cz_id."),
            label='Climate Zone (Raster)',
            validator=self.validator)
        self.climate_zone_container.add_input(self.climate_zone_raster_path)
        self.user_defined_local_recharge_container = inputs.Container(
            args_key='user_defined_local_recharge',
            expandable=True,
            label='User Defined Recharge Layer (Advanced)')
        self.add_input(self.user_defined_local_recharge_container)
        self.l_path = inputs.File(args_key='l_path',
                                  label='Local Recharge (Raster)',
                                  validator=self.validator)
        self.user_defined_local_recharge_container.add_input(self.l_path)
        self.monthly_alpha_container = inputs.Container(
            args_key='monthly_alpha',
            expandable=True,
            label='Monthly Alpha Table (Advanced)')
        self.add_input(self.monthly_alpha_container)
        self.monthly_alpha_path = inputs.File(
            args_key='monthly_alpha_path',
            label='Monthly Alpha Table (csv)',
            validator=self.validator)
        self.monthly_alpha_container.add_input(self.monthly_alpha_path)

        # Set interactivity, requirement as input sufficiency changes
        self.user_defined_local_recharge_container.sufficiency_changed.connect(
            self._toggle_user_defined_local_recharge)
        self.monthly_alpha_container.sufficiency_changed.connect(
            self._toggle_monthly_alpha)
Exemple #9
0
    def __init__(self):
        model.InVESTModel.__init__(self,
                                   label=u'GLOBIO',
                                   target=natcap.invest.globio.execute,
                                   validator=natcap.invest.globio.validate,
                                   localdoc=u'../documentation/globio.html')

        self.lulc_to_globio_table_path = inputs.File(
            args_key=u'lulc_to_globio_table_path',
            helptext=(u"A CSV table containing model information "
                      u"corresponding to each of the land use classes in the "
                      u"LULC raster input.  It must contain the fields "
                      u"'lucode', 'usle_c', and 'usle_p'.  See the InVEST "
                      u"Sediment User's Guide for more information about "
                      u"these fields."),
            label=u'Landcover to GLOBIO Landcover Table (CSV)',
            validator=self.validator)
        self.add_input(self.lulc_to_globio_table_path)
        self.aoi_path = inputs.File(
            args_key=u'aoi_path',
            helptext=(u"This is a set of polygons that can be used to "
                      u"aggregate MSA sum and mean to a polygon."),
            label=u'AOI (Vector) (optional)',
            validator=self.validator)
        self.add_input(self.aoi_path)
        self.land_use = inputs.File(args_key=u'lulc_path',
                                    label=u'Land Use/Cover (Raster)',
                                    validator=self.validator)
        self.add_input(self.land_use)
        self.infrastructure_dir = inputs.Folder(
            args_key=u'infrastructure_dir',
            label=u'Infrastructure Directory',
            validator=self.validator)
        self.add_input(self.infrastructure_dir)
        self.pasture_path = inputs.File(args_key=u'pasture_path',
                                        label=u'Pasture (Raster)',
                                        validator=self.validator)
        self.add_input(self.pasture_path)
        self.potential_vegetation_path = inputs.File(
            args_key=u'potential_vegetation_path',
            label=u'Potential Vegetation (Raster)',
            validator=self.validator)
        self.add_input(self.potential_vegetation_path)
        self.primary_threshold = inputs.Text(args_key=u'primary_threshold',
                                             label=u'Primary Threshold',
                                             validator=self.validator)
        self.add_input(self.primary_threshold)
        self.pasture_threshold = inputs.Text(args_key=u'pasture_threshold',
                                             label=u'Pasture Threshold',
                                             validator=self.validator)
        self.add_input(self.pasture_threshold)
        self.intensification_fraction = inputs.Text(
            args_key=u'intensification_fraction',
            helptext=(u"A value between 0 and 1 denoting proportion of total "
                      u"agriculture that should be classified as 'high "
                      u"input'."),
            label=u'Proportion of of Agriculture Intensified',
            validator=self.validator)
        self.add_input(self.intensification_fraction)
        self.msa_parameters_path = inputs.File(
            args_key=u'msa_parameters_path',
            helptext=(u"A CSV table containing MSA threshold values as "
                      u"defined in the user's guide.  Provided for advanced "
                      u"users that may wish to change those values."),
            label=u'MSA Parameter Table (CSV)',
            validator=self.validator)
        self.add_input(self.msa_parameters_path)
        self.predefined_globio = inputs.Container(
            args_key=u'predefined_globio',
            expandable=True,
            expanded=False,
            label=u'Predefined land use map for GLOBIO')
        self.add_input(self.predefined_globio)
        self.globio_land_use = inputs.File(
            args_key=u'globio_lulc_path',
            label=u'GLOBIO Classified Land Use (Raster)',
            validator=self.validator)
        self.predefined_globio.add_input(self.globio_land_use)

        # Set interactivity, requirement as input sufficiency changes
        self.predefined_globio.sufficiency_changed.connect(
            self._predefined_globio_toggled)
Exemple #10
0
    def __init__(self):
        model.InVESTModel.__init__(
            self,
            label='Coastal Vulnerability Assessment Tool',
            target=coastal_vulnerability.execute,
            validator=coastal_vulnerability.validate,
            localdoc='../documentation/coastal_vulnerability.html',
            suffix_args_key='suffix'
        )

        self.general_tab = inputs.Container(
            interactive=True,
            label='General')
        self.add_input(self.general_tab)
        self.area_computed = inputs.Dropdown(
            args_key='area_computed',
            helptext=(
                "Determine if the output data is about all the coast "
                "or about sheltered segments only."),
            label='Output Area: Sheltered/Exposed?',
            options=['both', 'sheltered'])
        self.general_tab.add_input(self.area_computed)
        self.area_of_interest = inputs.File(
            args_key='aoi_uri',
            helptext=(
                "An OGR-supported, single-feature polygon vector "
                "file.  All outputs will be in the AOI's projection."),
            label='Area of Interest (Vector)',
            validator=self.validator)
        self.general_tab.add_input(self.area_of_interest)
        self.landmass_uri = inputs.File(
            args_key='landmass_uri',
            helptext=(
                "An OGR-supported vector file containing a landmass "
                "polygon from where the coastline will be extracted. "
                "The default is the global land polygon."),
            label='Land Polygon (Vector)',
            validator=self.validator)
        self.general_tab.add_input(self.landmass_uri)
        self.bathymetry_layer = inputs.File(
            args_key='bathymetry_uri',
            helptext=(
                "A GDAL-supported raster of the terrain elevation in "
                "the area of interest.  Used to compute depths along "
                "fetch rays, relief and surge potential."),
            label='Bathymetry Layer (Raster)',
            validator=self.validator)
        self.general_tab.add_input(self.bathymetry_layer)
        self.bathymetry_constant = inputs.Text(
            args_key='bathymetry_constant',
            helptext=(
                "Integer value between 1 and 5. If layer associated "
                "to this field is omitted, replace all shore points "
                "for this layer with a constant rank value in the "
                "computation of the coastal vulnerability index.  If "
                "both the file and value for the layer are omitted, "
                "the layer is skipped altogether."),
            label='Layer Value if Path Omitted',
            validator=self.validator)
        self.general_tab.add_input(self.bathymetry_constant)
        self.relief = inputs.File(
            args_key='relief_uri',
            helptext=(
                "A GDAL-supported raster file containing the land "
                "elevation used to compute the average land elevation "
                "within a user-defined radius (see Elevation averaging "
                "radius)."),
            label='Relief (Raster)',
            validator=self.validator)
        self.general_tab.add_input(self.relief)
        self.relief_constant = inputs.Text(
            args_key='relief_constant',
            helptext=(
                "Integer value between 1 and 5. If layer associated "
                "to this field is omitted, replace all shore points "
                "for this layer with a constant rank value in the "
                "computation of the coastal vulnerability index.  If "
                "both the file and value for the layer are omitted, "
                "the layer is skipped altogether."),
            label='Layer Value If Path Omitted',
            validator=self.validator)
        self.general_tab.add_input(self.relief_constant)
        self.cell_size = inputs.Text(
            args_key='cell_size',
            helptext=(
                "Cell size in meters.  The higher the value, the "
                "faster the computation, but the coarser the output "
                "rasters produced by the model."),
            label='Model Resolution (Segment Size)',
            validator=self.validator)
        self.general_tab.add_input(self.cell_size)
        self.depth_threshold = inputs.Text(
            args_key='depth_threshold',
            helptext=(
                "Depth in meters (integer) cutoff to determine if "
                "fetch rays project over deep areas."),
            label='Depth Threshold (meters)',
            validator=self.validator)
        self.general_tab.add_input(self.depth_threshold)
        self.exposure_proportion = inputs.Text(
            args_key='exposure_proportion',
            helptext=(
                "Minimum proportion of rays that project over exposed "
                "and/or deep areas need to classify a shore segment as "
                "exposed."),
            label='Exposure Proportion',
            validator=self.validator)
        self.general_tab.add_input(self.exposure_proportion)
        self.geomorphology_uri = inputs.File(
            args_key='geomorphology_uri',
            helptext=(
                "A OGR-supported polygon vector file that has a field "
                "called 'RANK' with values between 1 and 5 in the "
                "attribute table."),
            label='Geomorphology (Vector)',
            validator=self.validator)
        self.general_tab.add_input(self.geomorphology_uri)
        self.geomorphology_constant = inputs.Text(
            args_key='geomorphology_constant',
            helptext=(
                "Integer value between 1 and 5. If layer associated "
                "to this field is omitted, replace all shore points "
                "for this layer with a constant rank value in the "
                "computation of the coastal vulnerability index.  If "
                "both the file and value for the layer are omitted, "
                "the layer is skipped altogether."),
            label='Layer Value if Path Omitted',
            validator=self.validator)
        self.general_tab.add_input(self.geomorphology_constant)
        self.habitats_directory_uri = inputs.Folder(
            args_key='habitats_directory_uri',
            helptext=(
                "Directory containing OGR-supported polygon vectors "
                "associated with natural habitats.  The name of these "
                "shapefiles should be suffixed with the ID that is "
                "specified in the natural habitats CSV file provided "
                "along with the habitats."),
            label='Natural Habitats Directory',
            validator=self.validator)
        self.general_tab.add_input(self.habitats_directory_uri)
        self.habitats_csv_uri = inputs.File(
            args_key='habitats_csv_uri',
            helptext=(
                "A CSV file listing the attributes for each habitat. "
                "For more information, see 'Habitat Data Layer' "
                "section in the model's documentation.</a>."),
            interactive=False,
            label='Natural Habitats Table (CSV)',
            validator=self.validator)
        self.general_tab.add_input(self.habitats_csv_uri)
        self.habitats_constant = inputs.Text(
            args_key='habitat_constant',
            helptext=(
                "Integer value between 1 and 5. If layer associated "
                "to this field is omitted, replace all shore points "
                "for this layer with a constant rank value in the "
                "computation of the coastal vulnerability index.  If "
                "both the file and value for the layer are omitted, "
                "the layer is skipped altogether."),
            label='Layer Value if Path Omitted',
            validator=self.validator)
        self.general_tab.add_input(self.habitats_constant)
        self.climatic_forcing_uri = inputs.File(
            args_key='climatic_forcing_uri',
            helptext=(
                "An OGR-supported vector containing both wind and "
                "wave information across the region of interest."),
            label='Climatic Forcing Grid (Vector)',
            validator=self.validator)
        self.general_tab.add_input(self.climatic_forcing_uri)
        self.climatic_forcing_constant = inputs.Text(
            args_key='climatic_forcing_constant',
            helptext=(
                "Integer value between 1 and 5. If layer associated "
                "to this field is omitted, replace all shore points "
                "for this layer with a constant rank value in the "
                "computation of the coastal vulnerability index.  If "
                "both the file and value for the layer are omitted, "
                "the layer is skipped altogether."),
            label='Layer Value if Path Omitted',
            validator=self.validator)
        self.general_tab.add_input(self.climatic_forcing_constant)
        self.continental_shelf_uri = inputs.File(
            args_key='continental_shelf_uri',
            helptext=(
                "An OGR-supported polygon vector delineating the "
                "edges of the continental shelf.  Default is global "
                "continental shelf shapefile.  If omitted, the user "
                "can specify depth contour.  See entry below."),
            label='Continental Shelf (Vector)',
            validator=self.validator)
        self.general_tab.add_input(self.continental_shelf_uri)
        self.depth_contour = inputs.Text(
            args_key='depth_contour',
            helptext=(
                "Used to delineate shallow and deep areas. "
                "Continental shelf limit is at about 150 meters."),
            label='Depth Countour Level (meters)',
            validator=self.validator)
        self.general_tab.add_input(self.depth_contour)
        self.sea_level_rise_uri = inputs.File(
            args_key='sea_level_rise_uri',
            helptext=(
                "An OGR-supported point or polygon vector file "
                "containing features with 'Trend' fields in the "
                "attributes table."),
            label='Sea Level Rise (Vector)',
            validator=self.validator)
        self.general_tab.add_input(self.sea_level_rise_uri)
        self.sea_level_rise_constant = inputs.Text(
            args_key='sea_level_rise_constant',
            helptext=(
                "Integer value between 1 and 5. If layer associated "
                "to this field is omitted, replace all shore points "
                "for this layer with a constant rank value in the "
                "computation of the coastal vulnerability index.  If "
                "both the file and value for the layer are omitted, "
                "the layer is skipped altogether."),
            label='Layer Value if Path Omitted',
            validator=self.validator)
        self.general_tab.add_input(self.sea_level_rise_constant)
        self.structures_uri = inputs.File(
            args_key='structures_uri',
            helptext=(
                "An OGR-supported vector file containing rigid "
                "structures used to identify the portions of the coast "
                "that is armored."),
            label='Structures (Vectors)',
            validator=self.validator)
        self.general_tab.add_input(self.structures_uri)
        self.structures_constant = inputs.Text(
            args_key='structures_constant',
            helptext=(
                "Integer value between 1 and 5. If layer associated "
                "to this field is omitted, replace all shore points "
                "for this layer with a constant rank value in the "
                "computation of the coastal vulnerability index.  If "
                "both the file and value for the layer are omitted, "
                "the layer is skipped altogether."),
            label='Layer Value if Path Omitted',
            validator=self.validator)
        self.general_tab.add_input(self.structures_constant)
        self.population_uri = inputs.File(
            args_key='population_uri',
            helptext=(
                'A GDAL-supported raster file representing the population '
                'density.'),
            label='Population Layer (Raster)',
            validator=self.validator)
        self.general_tab.add_input(self.population_uri)
        self.urban_center_threshold = inputs.Text(
            args_key='urban_center_threshold',
            helptext=(
                "Minimum population required to consider the shore "
                "segment a population center."),
            label='Min. Population in Urban Centers',
            validator=self.validator)
        self.general_tab.add_input(self.urban_center_threshold)
        self.additional_layer_uri = inputs.File(
            args_key='additional_layer_uri',
            helptext=(
                "An OGR-supported vector file representing sea level "
                "rise, and will be used in the computation of coastal "
                "vulnerability and coastal vulnerability without "
                "habitat."),
            label='Additional Layer (Vector)',
            validator=self.validator)
        self.general_tab.add_input(self.additional_layer_uri)
        self.additional_layer_constant = inputs.Text(
            args_key='additional_layer_constant',
            helptext=(
                "Integer value between 1 and 5. If layer associated "
                "to this field is omitted, replace all shore points "
                "for this layer with a constant rank value in the "
                "computation of the coastal vulnerability index.  If "
                "both the file and value for the layer are omitted, "
                "the layer is skipped altogether."),
            label='Layer Value if Path Omitted',
            validator=self.validator)
        self.general_tab.add_input(self.additional_layer_constant)
        self.advanced_tab = inputs.Container(
            interactive=True,
            label='Advanced')
        self.add_input(self.advanced_tab)
        self.elevation_averaging_radius = inputs.Text(
            args_key='elevation_averaging_radius',
            helptext=(
                "Distance in meters (integer). Each pixel average "
                "elevation will be computed within this radius."),
            label='Elevation Averaging Radius (meters)',
            validator=self.validator)
        self.advanced_tab.add_input(self.elevation_averaging_radius)
        self.mean_sea_level_datum = inputs.Text(
            args_key='mean_sea_level_datum',
            helptext=(
                "Height in meters (integer). This input is the "
                "elevation of Mean Sea Level (MSL) datum relative to "
                "the datum of the bathymetry layer.  The model "
                "transforms all depths to MSL datum.  A positive value "
                "means the MSL is higher than the bathymetry's zero "
                "(0) elevation, so the value is subtracted from the "
                "bathymetry."),
            label='Mean Sea Level Datum (meters)',
            validator=self.validator)
        self.advanced_tab.add_input(self.mean_sea_level_datum)
        self.rays_per_sector = inputs.Text(
            args_key='rays_per_sector',
            helptext=(
                "Number of rays used to subsample the fetch distance "
                "within each of the 16 sectors."),
            label='Rays per Sector',
            validator=self.validator)
        self.advanced_tab.add_input(self.rays_per_sector)
        self.max_fetch = inputs.Text(
            args_key='max_fetch',
            helptext=(
                'Maximum fetch distance computed by the model '
                '(&gt;=60,000m).'),
            label='Maximum Fetch Distance (meters)',
            validator=self.validator)
        self.advanced_tab.add_input(self.max_fetch)
        self.spread_radius = inputs.Text(
            args_key='spread_radius',
            helptext=(
                "Integer multiple of 'cell size'. The coast from the "
                "geomorphology layer could be of a better resolution "
                "than the global landmass, so the shores do not "
                "necessarily overlap.  To make them coincide, the "
                "shore from the geomorphology layer is widened by 1 or "
                "more pixels.  The value should be a multiple of 'cell "
                "size' that indicates how many pixels the coast from "
                "the geomorphology layer is widened.  The widening "
                "happens on each side of the coast (n pixels landward, "
                "and n pixels seaward)."),
            label='Coastal Overlap (meters)',
            validator=self.validator)
        self.advanced_tab.add_input(self.spread_radius)
        self.population_radius = inputs.Text(
            args_key='population_radius',
            helptext=(
                "Radius length in meters used to count the number of "
                "people leaving close to the coast."),
            label='Coastal Neighborhood (radius in meters)',
            validator=self.validator)
        self.advanced_tab.add_input(self.population_radius)

        # Set interactivity, requirement as input sufficiency changes
        self.habitats_directory_uri.sufficiency_changed.connect(
            self.habitats_csv_uri.set_interactive)
Exemple #11
0
    def __init__(self):
        model.InVESTModel.__init__(
            self,
            label='Coastal Blue Carbon',
            target=coastal_blue_carbon.execute,
            validator=coastal_blue_carbon.validate,
            localdoc='coastal_blue_carbon.html')

        self.lulc_lookup_uri = inputs.File(
            args_key='lulc_lookup_uri',
            helptext=(
                "A CSV table used to map lulc classes to their values "
                "in a raster and to indicate whether or not the lulc "
                "class is a coastal blue carbon habitat."),
            label='LULC Lookup Table (CSV)',
            validator=self.validator)
        self.add_input(self.lulc_lookup_uri)
        self.lulc_transition_matrix_uri = inputs.File(
            args_key='lulc_transition_matrix_uri',
            helptext=(
                "Generated by the preprocessor.  This file must be "
                "edited before it can be used by the main model.  The "
                "left-most column represents the source lulc class, "
                "and the top row represents the destination lulc "
                "class."),
            label='LULC Transition Effect of Carbon Table (CSV)',
            validator=self.validator)
        self.add_input(self.lulc_transition_matrix_uri)
        self.carbon_pool_initial_uri = inputs.File(
            args_key='carbon_pool_initial_uri',
            helptext=(
                "The provided CSV table contains information related "
                "to the initial conditions of the carbon stock within "
                "each of the three pools of a habitat.  Biomass "
                "includes carbon stored above and below ground.  All "
                "non-coastal blue carbon habitat lulc classes are "
                "assumed to contain no carbon.  The values for "
                "‘biomass’, ‘soil’, and ‘litter’ should be given in "
                "terms of Megatonnes CO2e/ha."),
            label='Carbon Pool Initial Variables Table (CSV)',
            validator=self.validator)
        self.add_input(self.carbon_pool_initial_uri)
        self.carbon_pool_transient_uri = inputs.File(
            args_key='carbon_pool_transient_uri',
            helptext=(
                "The provided CSV table contains information related "
                "to the transition of carbon into and out of coastal "
                "blue carbon pools.  All non-coastal blue carbon "
                "habitat lulc classes are assumed to neither sequester "
                "nor emit carbon as a result of change.  The "
                "‘yearly_accumulation’ values should be given in terms "
                "of Megatonnes of CO2e/ha-yr.  The ‘half-life’ values "
                "must be given in terms of years.  The ‘disturbance’ "
                "values must be given as a decimal percentage of stock "
                "distrubed given a transition occurs away from a lulc- "
                "class."),
            label='Carbon Pool Transient Variables Table (CSV)',
            validator=self.validator)
        self.add_input(self.carbon_pool_transient_uri)
        self.lulc_baseline_map_uri = inputs.File(
            args_key='lulc_baseline_map_uri',
            helptext=(
                "A GDAL-supported raster representing the baseline "
                "landscape/seascape."),
            label='Baseline LULC Raster (GDAL-supported)',
            validator=self.validator)
        self.add_input(self.lulc_baseline_map_uri)
        self.lulc_baseline_year = inputs.Text(
            args_key='lulc_baseline_year',
            label='Year of baseline LULC raster',
            validator=self.validator)
        self.add_input(self.lulc_baseline_year)
        self.lulc_transition_maps_list = inputs.Multi(
            args_key='lulc_transition_maps_list',
            callable_=functools.partial(inputs.File, label="Input"),
            label='LULC Transition ("Snapshot") Rasters (GDAL-supported)',
            link_text='Add Another')
        self.add_input(self.lulc_transition_maps_list)
        self.lulc_transition_years_list = inputs.Multi(
            args_key='lulc_transition_years_list',
            callable_=functools.partial(inputs.Text, label="Input"),
            label='LULC Transition ("Snapshot") Years',
            link_text='Add Another')
        self.add_input(self.lulc_transition_years_list)
        self.analysis_year = inputs.Text(
            args_key='analysis_year',
            helptext=(
                "An analysis year extends the transient analysis "
                "beyond the transition years."),
            label='Analysis Year (Optional)',
            validator=self.validator)
        self.add_input(self.analysis_year)
        self.do_economic_analysis = inputs.Container(
            args_key='do_economic_analysis',
            expandable=True,
            expanded=True,
            label='Calculate Net Present Value of Sequestered Carbon')
        self.add_input(self.do_economic_analysis)
        self.do_price_table = inputs.Checkbox(
            args_key='do_price_table',
            helptext='',
            label='Use Price Table')
        self.do_economic_analysis.add_input(self.do_price_table)
        self.price = inputs.Text(
            args_key='price',
            helptext='The price per Megatonne CO2e at the base year.',
            label='Price',
            validator=self.validator)
        self.do_economic_analysis.add_input(self.price)
        self.inflation_rate = inputs.Text(
            args_key='inflation_rate',
            helptext="Annual change in the price per unit of carbon",
            label='Interest Rate (%)',
            validator=self.validator)
        self.do_economic_analysis.add_input(self.inflation_rate)
        self.price_table_uri = inputs.File(
            args_key='price_table_uri',
            helptext=(
                "Can be used in place of price and interest rate "
                "inputs.  The provided CSV table contains the price "
                "per Megatonne CO2e sequestered for a given year, for "
                "all years from the original snapshot to the analysis "
                "year, if provided."),
            interactive=False,
            label='Price Table (CSV)',
            validator=self.validator)
        self.do_economic_analysis.add_input(self.price_table_uri)
        self.discount_rate = inputs.Text(
            args_key='discount_rate',
            helptext=(
                "The discount rate on future valuations of "
                "sequestered carbon, compounded yearly."),
            label='Discount Rate (%)',
            validator=self.validator)
        self.do_economic_analysis.add_input(self.discount_rate)

        # Set interactivity, requirement as input sufficiency changes
        self.do_price_table.sufficiency_changed.connect(
            self._price_table_sufficiency_changed)
Exemple #12
0
    def __init__(self):
        model.InVESTModel.__init__(
            self,
            label=MODEL_METADATA['annual_water_yield'].model_title,
            target=annual_water_yield.execute,
            validator=annual_water_yield.validate,
            localdoc=MODEL_METADATA['annual_water_yield'].userguide)

        self.precipitation = inputs.File(
            args_key='precipitation_path',
            helptext=("A GDAL-supported raster file containing non-zero, "
                      "average annual precipitation values for each cell. "
                      "The precipitation values should be in millimeters "
                      "(mm)."),
            label='Precipitation (Raster)',
            validator=self.validator)
        self.add_input(self.precipitation)
        self.potential_evapotranspiration = inputs.File(
            args_key='eto_path',
            helptext=("A GDAL-supported raster file containing annual "
                      "average reference evapotranspiration values for each "
                      "cell.  The reference evapotranspiration values should "
                      "be in millimeters (mm)."),
            label='Reference Evapotranspiration (Raster)',
            validator=self.validator)
        self.add_input(self.potential_evapotranspiration)
        self.depth_to_root_rest_layer = inputs.File(
            args_key='depth_to_root_rest_layer_path',
            helptext=("A GDAL-supported raster file containing an average "
                      "root restricting layer depth value for each cell. "
                      "The root restricting layer depth value should be in "
                      "millimeters (mm)."),
            label='Depth To Root Restricting Layer (Raster)',
            validator=self.validator)
        self.add_input(self.depth_to_root_rest_layer)
        self.plant_available_water_fraction = inputs.File(
            args_key='pawc_path',
            helptext=("A GDAL-supported raster file containing plant "
                      "available water content values for each cell.  The "
                      "plant available water content fraction should be a "
                      "value between 0 and 1."),
            label='Plant Available Water Fraction (Raster)',
            validator=self.validator)
        self.add_input(self.plant_available_water_fraction)
        self.land_use = inputs.File(
            args_key='lulc_path',
            helptext=("A GDAL-supported raster file containing LULC code "
                      "(expressed as integers) for each cell."),
            label='Land Use (Raster)',
            validator=self.validator)
        self.add_input(self.land_use)
        self.watersheds = inputs.File(
            args_key='watersheds_path',
            helptext=("An OGR-supported vector file containing one polygon "
                      "per watershed.  Each polygon that represents a "
                      "watershed is required to have a field 'ws_id' that is "
                      "a unique integer which identifies that watershed."),
            label='Watersheds (Vector)',
            validator=self.validator)
        self.add_input(self.watersheds)
        self.sub_watersheds = inputs.File(
            args_key='sub_watersheds_path',
            helptext=("An OGR-supported vector file with one polygon per "
                      "sub-watershed within the main watersheds specified in "
                      "the Watersheds shapefile.  Each polygon that "
                      "represents a sub-watershed is required to have a "
                      "field 'subws_id' that is a unique integer which "
                      "identifies that sub-watershed."),
            label='Sub-Watersheds (Vector) (Optional)',
            validator=self.validator)
        self.add_input(self.sub_watersheds)
        self.biophysical_table = inputs.File(
            args_key='biophysical_table_path',
            helptext=("A CSV table of land use/land cover (LULC) classes, "
                      "containing data on biophysical coefficients used in "
                      "this model.  The following columns are required: "
                      "'lucode' (integer), 'root_depth' (mm), 'Kc' "
                      "(coefficient)."),
            label='Biophysical Table (CSV)',
            validator=self.validator)
        self.add_input(self.biophysical_table)
        self.seasonality_constant = inputs.Text(
            args_key='seasonality_constant',
            helptext=("Floating point value on the order of 1 to 30 "
                      "corresponding to the seasonal distribution of "
                      "precipitation."),
            label='Z parameter',
            validator=self.validator)
        self.add_input(self.seasonality_constant)
        self.scarcity_valuation_container = inputs.Container(
            args_key='do_scarcity_and_valuation',
            expandable=True,
            expanded=False,
            label='Water Scarcity and Valuation')
        self.add_input(self.scarcity_valuation_container)
        self.demand_table = inputs.File(
            args_key='demand_table_path',
            helptext=("A CSV table of LULC classes, showing consumptive "
                      "water use for each land-use/land-cover type.  The "
                      "table requires two column fields: 'lucode' and "
                      "'demand'. The demand values should be the estimated "
                      "average consumptive water use for each land-use/land- "
                      "cover type.  Water use should be given in cubic "
                      "meters per year for a pixel in the land-use/land- "
                      "cover map.  NOTE: the accounting for pixel area is "
                      "important since larger areas will consume more water "
                      "for the same land-cover type."),
            label='Water Demand Table (CSV)',
            validator=self.validator)
        self.scarcity_valuation_container.add_input(self.demand_table)
        self.hydropower_valuation_table = inputs.File(
            args_key='valuation_table_path',
            helptext=("A CSV table of hydropower stations with associated "
                      "model values.  The table should have the following "
                      "column fields: 'ws_id', 'efficiency', 'fraction', "
                      "'height', 'kw_price', 'cost', 'time_span', and "
                      "'discount'."),
            label='Hydropower Valuation Table (CSV) (Optional)',
            validator=self.validator)
        self.scarcity_valuation_container.add_input(
            self.hydropower_valuation_table)
    def __init__(self):
        model.InVESTModel.__init__(
            self,
            label='Urban Cooling Model',
            target=natcap.invest.urban_cooling_model.execute,
            validator=natcap.invest.urban_cooling_model.validate,
            localdoc='urban_cooling_model.html')

        self.lulc_raster_path = inputs.File(
            args_key='lulc_raster_path',
            helptext=('Path to landcover raster.'),
            label='Land Use / Land Cover (Raster)',
            validator=self.validator)
        self.add_input(self.lulc_raster_path)

        self.ref_eto_raster_path = inputs.File(
            args_key='ref_eto_raster_path',
            helptext=('Path to evapotranspiration raster.'),
            label='Reference Evapotranspiration (Raster)',
            validator=self.validator)
        self.add_input(self.ref_eto_raster_path)

        self.aoi_vector_path = inputs.File(
            args_key='aoi_vector_path',
            helptext=('Path to desired AOI.'),
            label='Area of Interest (Vector)',
            validator=self.validator)
        self.add_input(self.aoi_vector_path)

        self.biophysical_table_path = inputs.File(
            args_key='biophysical_table_path',
            helptext=(
                "Table to map landcover codes to Shade, Kc, and Albedo "
                "values. Must contain the fields 'lucode', 'shade', 'kc', "
                "and 'albedo'."),
            label='Biophysical Table (CSV)',
            validator=self.validator)
        self.add_input(self.biophysical_table_path)

        self.t_ref = inputs.Text(
            args_key='t_ref',
            helptext=('Reference air temperature (real).'),
            label='Baseline air temperature (°C)',
            validator=self.validator)
        self.t_ref.set_value("21.5")
        self.add_input(self.t_ref)

        self.uhi_max = inputs.Text(
            args_key='uhi_max',
            label='Magnitude of the UHI effect (°C)',
            helptext=(
                "The magnitude of the urban heat island effect, in degrees "
                "C.  Example: the difference between the rural reference "
                "temperature and the maximum temperature observed in the "
                "city."),
            validator=self.validator)
        self.add_input(self.uhi_max)
        self.uhi_max.set_value("3.5")

        self.t_air_average_radius = inputs.Text(
            args_key='t_air_average_radius',
            label='Air Temperature Maximum Blending Distance (m).',
            helptext=(
                "Radius of the averaging filter for turning T_air_nomix "
                "into T_air"),
            validator=self.validator)
        self.add_input(self.t_air_average_radius)
        self.t_air_average_radius.set_value("2000")

        self.green_area_cooling_distance = inputs.Text(
            args_key='green_area_cooling_distance',
            label='Green Area Maximum Cooling Distance (m).',
            helptext=(
                "Distance (in m) over which large green areas (> 2 ha) "
                "will have a cooling effect."),
            validator=self.validator)
        self.add_input(self.green_area_cooling_distance)
        self.green_area_cooling_distance.set_value("1000")

        self.cc_method = inputs.Dropdown(
            label='Cooling Capacity Calculation Method',
            args_key='cc_method',
            helptext=(
                'The method selected here determines the predictor used for '
                'air temperature.  If <b>"Weighted Factors"</b> is '
                'selected, the Cooling Capacity calculations will use the '
                'weighted factors for shade, albedo and ETI as a predictor '
                'for daytime temperatures. <br/>'
                'Alternatively, if <b>"Building Intensity"</b> is selected, '
                'building intensity will be used as a predictor for nighttime '
                'temperature instead of shade, albedo and ETI.'
            ),
            options=('Weighted Factors', 'Building Intensity'),
            return_value_map={
                'Weighted Factors': 'factors',
                'Building Intensity': 'intensity',
            })
        self.cc_method.value_changed.connect(
            self._enable_cc_options)
        self.add_input(self.cc_method)

        self.energy_valuation_container = inputs.Container(
            args_key='do_energy_valuation',
            expandable=True,
            expanded=True,
            interactive=True,
            label='Run Energy Savings Valuation Model')
        self.add_input(self.energy_valuation_container)

        self.productivity_valuation_container = inputs.Container(
            args_key='do_productivity_valuation',
            expandable=True,
            expanded=True,
            interactive=True,
            label='Run Work Productivity Valuation Model')
        self.add_input(self.productivity_valuation_container)

        self.building_vector_path = inputs.File(
            args_key='building_vector_path',
            helptext=(
                "Path to a vector of building footprints that contains at "
                "least the field 'type'."),
            label='Building Footprints (Vector)',
            validator=self.validator)
        self.energy_valuation_container.add_input(self.building_vector_path)

        self.energy_consumption_table_path = inputs.File(
            args_key='energy_consumption_table_path',
            helptext=(
                "Path to a table that maps building types to energy "
                "consumption. Must contain at least the fields 'type' "
                "and 'consumption'."),
            label='Energy Consumption Table (CSV)',
            validator=self.validator)
        self.energy_valuation_container.add_input(self.energy_consumption_table_path)

        self.avg_rel_humidity = inputs.Text(
            args_key='avg_rel_humidity',
            label='Average relative humidity (0-100%)',
            helptext=(
                "The average relative humidity (0-100%)."),
            validator=self.validator)
        self.productivity_valuation_container.add_input(self.avg_rel_humidity)
        self.avg_rel_humidity.set_value("30")

        self.cooling_capacity_container = inputs.Container(
            expandable=True,
            expanded=True,
            interactive=True,
            label='Manually Adjust Cooling Capacity Index Weights'
        )
        self.add_input(self.cooling_capacity_container)

        self.cc_weight_shade = inputs.Text(
            args_key='cc_weight_shade',
            helptext=("Shade weight for cooling capacity index. "
                      "Default: 0.6"),
            label='Shade',
            validator=self.validator)
        self.cooling_capacity_container.add_input(self.cc_weight_shade)
        self.cc_weight_shade.set_value("0.6")

        self.cc_weight_albedo = inputs.Text(
            args_key='cc_weight_albedo',
            helptext=("Albedo weight for cooling capacity index. "
                      "Default: 0.2"),
            label='Albedo',
            validator=self.validator)
        self.cooling_capacity_container.add_input(self.cc_weight_albedo)
        self.cc_weight_albedo.set_value("0.2")

        self.cc_weight_eti = inputs.Text(
            args_key='cc_weight_eti',
            helptext=("Evapotranspiration index weight for cooling capacity. "
                      "Default: 0.2"),
            label='Evapotranspiration Index',
            validator=self.validator)
        self.cooling_capacity_container.add_input(self.cc_weight_eti)
        self.cc_weight_eti.set_value("0.2")
Exemple #14
0
    def __init__(self):
        model.InVESTModel.__init__(
            self,
            label=MODEL_METADATA['fisheries'].model_title,
            target=fisheries.execute,
            validator=fisheries.validate,
            localdoc=MODEL_METADATA['fisheries'].userguide)

        self.alpha_only = inputs.Label(
            text=("This tool is in an ALPHA testing stage and should "
                  "not be used for decision making."))
        self.aoi_vector_path = inputs.File(
            args_key='aoi_vector_path',
            helptext=("An OGR-supported vector file used to display outputs "
                      "within the region(s) of interest.<br><br>The layer "
                      "should contain one feature for every region of "
                      "interest, each feature of which should have a ‘NAME’ "
                      "attribute.  The 'NAME' attribute can be numeric or "
                      "alphabetic, but must be unique within the given file."),
            label='Area of Interest (Vector) (Optional)',
            validator=self.validator)
        self.add_input(self.aoi_vector_path)
        self.total_timesteps = inputs.Text(
            args_key='total_timesteps',
            helptext=("The number of time steps the simulation shall "
                      "execute before completion.<br><br>Must be a positive "
                      "integer."),
            label='Number of Time Steps for Model Run',
            validator=self.validator)
        self.add_input(self.total_timesteps)
        self.popu_cont = inputs.Container(label='Population Parameters')
        self.add_input(self.popu_cont)
        self.population_type = inputs.Dropdown(
            args_key='population_type',
            helptext=("Specifies whether the lifecycle classes provided in "
                      "the Population Parameters CSV file represent ages "
                      "(uniform duration) or stages.<br><br>Age-based models "
                      "(e.g.  Lobster, Dungeness Crab) are separated by "
                      "uniform, fixed-length time steps (usually "
                      "representing a year).<br><br>Stage-based models (e.g. "
                      "White Shrimp) allow lifecycle-classes to have "
                      "nonuniform durations based on the assumed resolution "
                      "of the provided time step.<br><br>If the stage-based "
                      "model is selected, the Population Parameters CSV file "
                      "must include a ‘Duration’ vector alongside the "
                      "survival matrix that contains the number of time "
                      "steps that each stage lasts."),
            label='Population Model Type',
            options=['Age-Based', 'Stage-Based'])
        self.popu_cont.add_input(self.population_type)
        self.sexsp = inputs.Dropdown(
            args_key='sexsp',
            helptext=("Specifies whether or not the lifecycle classes "
                      "provided in the Populaton Parameters CSV file are "
                      "distinguished by sex."),
            label='Population Classes are Sex-Specific',
            options=['No', 'Yes'])
        self.popu_cont.add_input(self.sexsp)
        self.harvest_units = inputs.Dropdown(
            args_key='harvest_units',
            helptext=("Specifies whether the harvest output values are "
                      "calculated in terms of number of individuals or in "
                      "terms of biomass (weight).<br><br>If ‘Weight’ is "
                      "selected, the Population Parameters CSV file must "
                      "include a 'Weight' vector alongside the survival "
                      "matrix that contains the weight of each lifecycle "
                      "class and sex if model is sex-specific."),
            label='Harvest by Individuals or Weight',
            options=['Individuals', 'Weight'])
        self.popu_cont.add_input(self.harvest_units)
        self.do_batch = inputs.Checkbox(
            args_key='do_batch',
            helptext=("Specifies whether program will perform a single "
                      "model run or a batch (set) of model runs.<br><br>For "
                      "single model runs, users submit a filepath pointing "
                      "to a single Population Parameters CSV file.  For "
                      "batch model runs, users submit a directory path "
                      "pointing to a set of Population Parameters CSV files."),
            label='Batch Processing')
        self.popu_cont.add_input(self.do_batch)
        self.population_csv_path = inputs.File(
            args_key='population_csv_path',
            helptext=("The provided CSV file should contain all necessary "
                      "attributes for the sub-populations based on lifecycle "
                      "class, sex, and area - excluding possible migration "
                      "information.<br><br>Please consult the documentation "
                      "to learn more about what content should be provided "
                      "and how the CSV file should be structured."),
            label='Population Parameters File (CSV)',
            validator=self.validator)
        self.popu_cont.add_input(self.population_csv_path)
        self.population_csv_dir = inputs.Folder(
            args_key='population_csv_dir',
            helptext=("The provided CSV folder should contain a set of "
                      "Population Parameters CSV files with all necessary "
                      "attributes for sub-populations based on lifecycle "
                      "class, sex, and area - excluding possible migration "
                      "information.<br><br>The name of each file will serve "
                      "as the prefix of the outputs created by the model "
                      "run.<br><br>Please consult the documentation to learn "
                      "more about what content should be provided and how "
                      "the CSV file should be structured."),
            interactive=False,
            label='Population Parameters CSV Folder',
            validator=self.validator)
        self.popu_cont.add_input(self.population_csv_dir)
        self.recr_cont = inputs.Container(label='Recruitment Parameters')
        self.add_input(self.recr_cont)
        self.total_init_recruits = inputs.Text(
            args_key='total_init_recruits',
            helptext=("The initial number of recruits in the population "
                      "model at time equal to zero.<br><br>If the model "
                      "contains multiple regions of interest or is "
                      "distinguished by sex, this value will be evenly "
                      "divided and distributed into each sub-population."),
            label='Total Initial Recruits',
            validator=self.validator)
        self.recr_cont.add_input(self.total_init_recruits)
        self.recruitment_type = inputs.Dropdown(
            args_key='recruitment_type',
            helptext=("The selected equation is used to calculate "
                      "recruitment into the subregions at the beginning of "
                      "each time step.  Corresponding parameters must be "
                      "specified with each function:<br><br>The Beverton- "
                      "Holt and Ricker functions both require arguments for "
                      "the ‘Alpha’ and ‘Beta’ parameters.<br><br>The "
                      "Fecundity function requires a 'Fecundity' vector "
                      "alongside the survival matrix in the Population "
                      "Parameters CSV file indicating the per-capita "
                      "offspring for each lifecycle class.<br><br>The Fixed "
                      "function requires an argument for the ‘Total Recruits "
                      "per Time Step’ parameter that represents a single "
                      "total recruitment value to be distributed into the "
                      "population model at the beginning of each time step."),
            label='Recruitment Function Type',
            options=['Beverton-Holt', 'Ricker', 'Fecundity', 'Fixed'])
        self.recr_cont.add_input(self.recruitment_type)
        self.spawn_units = inputs.Dropdown(
            args_key='spawn_units',
            helptext=("Specifies whether the spawner abundance used in the "
                      "recruitment function should be calculated in terms of "
                      "number of individuals or in terms of biomass "
                      "(weight).<br><br>If 'Weight' is selected, the user "
                      "must provide a 'Weight' vector alongside the survival "
                      "matrix in the Population Parameters CSV file.  The "
                      "'Alpha' and 'Beta' parameters provided by the user "
                      "should correspond to the selected choice.<br><br>Used "
                      "only for the Beverton-Holt and Ricker recruitment "
                      "functions."),
            label='Spawners by Individuals or Weight (Beverton-Holt / Ricker)',
            options=['Individuals', 'Weight'])
        self.recr_cont.add_input(self.spawn_units)
        self.alpha = inputs.Text(
            args_key='alpha',
            helptext=("Specifies the shape of the stock-recruit curve. "
                      "Used only for the Beverton-Holt and Ricker "
                      "recruitment functions.<br><br>Used only for the "
                      "Beverton-Holt and Ricker recruitment functions."),
            label='Alpha (Beverton-Holt / Ricker)',
            validator=self.validator)
        self.recr_cont.add_input(self.alpha)
        self.beta = inputs.Text(
            args_key='beta',
            helptext=("Specifies the shape of the stock-recruit "
                      "curve.<br><br>Used only for the Beverton-Holt and "
                      "Ricker recruitment functions."),
            label='Beta (Beverton-Holt / Ricker)',
            validator=self.validator)
        self.recr_cont.add_input(self.beta)
        self.total_recur_recruits = inputs.Text(
            args_key='total_recur_recruits',
            helptext=("Specifies the total number of recruits that come "
                      "into the population at each time step (a fixed "
                      "number).<br><br>Used only for the Fixed recruitment "
                      "function."),
            label='Total Recruits per Time Step (Fixed)',
            validator=self.validator)
        self.recr_cont.add_input(self.total_recur_recruits)
        self.migr_cont = inputs.Container(args_key='migr_cont',
                                          expandable=True,
                                          expanded=False,
                                          label='Migration Parameters')
        self.add_input(self.migr_cont)
        self.migration_dir = inputs.Folder(
            args_key='migration_dir',
            helptext=("The selected folder contain CSV migration matrices "
                      "to be used in the simulation.  Each CSV file contains "
                      "a single migration matrix corresponding to an "
                      "lifecycle class that migrates.  The folder should "
                      "contain one CSV file for each lifecycle class that "
                      "migrates.<br><br>The files may be named anything, but "
                      "must end with an underscore followed by the name of "
                      "the age or stage.  The name of the age or stage must "
                      "correspond to an age or stage within the Population "
                      "Parameters CSV file.  For example, a migration file "
                      "might be named 'migration_adult.csv'.<br><br>Each "
                      "matrix cell should contain a decimal fraction "
                      "indicating the percetage of the population that will "
                      "move from one area to another.  Each column should "
                      "sum to one."),
            label='Migration Matrix CSV Folder (Optional)',
            validator=self.validator)
        self.migr_cont.add_input(self.migration_dir)
        self.val_cont = inputs.Container(args_key='val_cont',
                                         expandable=True,
                                         expanded=False,
                                         label='Valuation Parameters')
        self.add_input(self.val_cont)
        self.frac_post_process = inputs.Text(
            args_key='frac_post_process',
            helptext=("Decimal fraction indicating the percentage of "
                      "harvested catch remaining after post-harvest "
                      "processing is complete."),
            label='Fraction of Harvest Kept After Processing',
            validator=self.validator)
        self.val_cont.add_input(self.frac_post_process)
        self.unit_price = inputs.Text(
            args_key='unit_price',
            helptext=("Specifies the price per harvest unit.<br><br>If "
                      "‘Harvest by Individuals or Weight’ was set to "
                      "‘Individuals’, this should be the price per "
                      "individual.  If set to ‘Weight’, this should be the "
                      "price per unit weight."),
            label='Unit Price',
            validator=self.validator)
        self.val_cont.add_input(self.unit_price)

        # Set interactivity, requirement as input sufficiency changes
        self.do_batch.sufficiency_changed.connect(self._toggle_batch_runs)

        # Enable/disable parameters when the recruitment function changes.
        self.recruitment_type.value_changed.connect(
            self._control_recruitment_parameters)
Exemple #15
0
    def __init__(self):
        model.InVESTModel.__init__(
            self,
            label=u'Wave Energy',
            target=natcap.invest.wave_energy.execute,
            validator=natcap.invest.wave_energy.validate,
            localdoc=u'wave_energy.html')

        self.wave_base_data = inputs.Folder(
            args_key=u'wave_base_data_path',
            helptext=(u'Select the folder that has the packaged Wave Energy '
                      u'Data.'),
            label=u'Wave Base Data Folder',
            validator=self.validator)
        self.add_input(self.wave_base_data)
        self.analysis_area = inputs.Dropdown(
            args_key=u'analysis_area_path',
            helptext=(u"A list of analysis areas for which the model can "
                      u"currently be run.  All the wave energy data needed "
                      u"for these areas are pre-packaged in the WaveData "
                      u"folder."),
            label=u'Analysis Area',
            options=(u'West Coast of North America and Hawaii',
                     u'East Coast of North America and Puerto Rico',
                     u'North Sea 4 meter resolution',
                     u'North Sea 10 meter resolution', u'Australia',
                     u'Global'))
        self.add_input(self.analysis_area)
        self.aoi = inputs.File(
            args_key=u'aoi_path',
            helptext=(u"An OGR-supported vector file containing a single "
                      u"polygon representing the area of interest.  This "
                      u"input is required for computing valuation and is "
                      u"recommended for biophysical runs as well.  The AOI "
                      u"should be projected in linear units of meters."),
            label=u'Area of Interest (Vector)',
            validator=self.validator)
        self.add_input(self.aoi)
        self.machine_perf_table = inputs.File(
            args_key=u'machine_perf_path',
            helptext=(u"A CSV Table that has the performance of a particular "
                      u"wave energy machine at certain sea state conditions."),
            label=u'Machine Performance Table (CSV)',
            validator=self.validator)
        self.add_input(self.machine_perf_table)
        self.machine_param_table = inputs.File(
            args_key=u'machine_param_path',
            helptext=(u"A CSV Table that has parameter values for a wave "
                      u"energy machine.  This includes information on the "
                      u"maximum capacity of the device and the upper limits "
                      u"for wave height and period."),
            label=u'Machine Parameter Table (CSV)',
            validator=self.validator)
        self.add_input(self.machine_param_table)
        self.dem = inputs.File(
            args_key=u'dem_path',
            helptext=(u"A GDAL-supported raster file containing a digital "
                      u"elevation model dataset that has elevation values in "
                      u"meters.  Used to get the cable distance for wave "
                      u"energy transmission."),
            label=u'Global Digital Elevation Model (Raster)',
            validator=self.validator)
        self.add_input(self.dem)
        self.valuation_container = inputs.Container(
            args_key=u'valuation_container',
            expandable=True,
            expanded=False,
            label=u'Valuation')
        self.add_input(self.valuation_container)
        self.land_grid_points = inputs.File(
            args_key=u'land_gridPts_path',
            helptext=(u"A CSV Table that has the landing points and grid "
                      u"points locations for computing cable distances."),
            label=u'Grid Connection Points File (CSV)',
            validator=self.validator)
        self.valuation_container.add_input(self.land_grid_points)
        self.machine_econ_table = inputs.File(
            args_key=u'machine_econ_path',
            helptext=(u"A CSV Table that has the economic parameters for the "
                      u"wave energy machine."),
            label=u'Machine Economic Table (CSV)',
            validator=self.validator)
        self.valuation_container.add_input(self.machine_econ_table)
        self.number_of_machines = inputs.Text(
            args_key=u'number_of_machines',
            helptext=(u"An integer for how many wave energy machines will be "
                      u"in the wave farm."),
            label=u'Number of Machines',
            validator=self.validator)
        self.valuation_container.add_input(self.number_of_machines)
Exemple #16
0
    def __init__(self):
        model.InVESTModel.__init__(
            self,
            label=MODEL_METADATA['recreation'].model_title,
            target=recmodel_client.execute,
            validator=recmodel_client.validate,
            localdoc=MODEL_METADATA['recreation'].userguide)

        self.internet_warning = inputs.Label(
            text=("Note, this computer must have an Internet connection "
                  "in order to run this model."))
        self.aoi_path = inputs.File(
            args_key='aoi_path',
            helptext=("An OGR-supported vector file representing the area "
                      "of interest where the model will run the analysis."),
            label='Area of Interest (Vector)',
            validator=self.validator)
        self.add_input(self.aoi_path)
        self.start_year = inputs.Text(
            args_key='start_year',
            helptext='Year to start PUD calculations, date starts on Jan 1st.',
            label='Start Year (inclusive, must be >= 2005)',
            validator=self.validator)
        self.add_input(self.start_year)
        self.end_year = inputs.Text(
            args_key='end_year',
            helptext=('Year to end PUD calculations, date ends and includes '
                      'Dec 31st.'),
            label='End Year (inclusive, must be <= 2017)',
            validator=self.validator)
        self.add_input(self.end_year)
        self.regression_container = inputs.Container(
            args_key='compute_regression',
            expandable=True,
            expanded=True,
            label='Compute Regression')
        self.add_input(self.regression_container)
        self.predictor_table_path = inputs.File(
            args_key='predictor_table_path',
            helptext=("A table that maps predictor IDs to files and their "
                      "types with required headers of 'id', 'path', and "
                      "'type'.  The file paths can be absolute, or relative "
                      "to the table."),
            label='Predictor Table',
            validator=self.validator)
        self.regression_container.add_input(self.predictor_table_path)
        self.scenario_predictor_table_path = inputs.File(
            args_key='scenario_predictor_table_path',
            helptext=("A table that maps predictor IDs to files and their "
                      "types with required headers of 'id', 'path', and "
                      "'type'.  The file paths can be absolute, or relative "
                      "to the table."),
            label='Scenario Predictor Table (optional)',
            validator=self.validator)
        self.regression_container.add_input(self.scenario_predictor_table_path)
        self.grid_container = inputs.Container(args_key='grid_aoi',
                                               expandable=True,
                                               expanded=True,
                                               label='Grid the AOI')
        self.add_input(self.grid_container)
        self.grid_type = inputs.Dropdown(args_key='grid_type',
                                         label='Grid Type',
                                         options=['square', 'hexagon'])
        self.grid_container.add_input(self.grid_type)
        self.cell_size = inputs.Text(
            args_key='cell_size',
            helptext=("The size of the grid units measured in the "
                      "projection units of the AOI. For example, UTM "
                      "projections use meters."),
            label='Cell Size',
            validator=self.validator)
        self.grid_container.add_input(self.cell_size)
Exemple #17
0
    def __init__(self):
        model.InVESTModel.__init__(self,
                                   label=u'Scenic Quality',
                                   target=scenic_quality.execute,
                                   validator=scenic_quality.validate,
                                   localdoc=u'scenic_quality.html')

        self.general_tab = inputs.Container(interactive=True, label=u'General')
        self.add_input(self.general_tab)
        self.aoi_path = inputs.File(
            args_key=u'aoi_path',
            helptext=(u"An OGR-supported vector file.  This AOI instructs "
                      u"the model where to clip the input data and the extent "
                      u"of analysis.  Users will create a polygon feature "
                      u"layer that defines their area of interest.  The AOI "
                      u"must intersect the Digital Elevation Model (DEM)."),
            label=u'Area of Interest (Vector) (Required)',
            validator=self.validator)
        self.general_tab.add_input(self.aoi_path)
        self.structure_path = inputs.File(
            args_key=u'structure_path',
            helptext=(u"An OGR-supported vector file.  The user must specify "
                      u"a point feature layer that indicates locations of "
                      u"objects that contribute to negative scenic quality, "
                      u"such as aquaculture netpens or wave energy "
                      u"facilities.  In order for the viewshed analysis to "
                      u"run correctly, the projection of this input must be "
                      u"consistent with the project of the DEM input."),
            label=u'Features Impacting Scenic Quality (Vector) (Required)',
            validator=self.validator)
        self.general_tab.add_input(self.structure_path)
        self.dem_path = inputs.File(
            args_key=u'dem_path',
            helptext=(u"A GDAL-supported raster file.  An elevation raster "
                      u"layer is required to conduct viewshed analysis. "
                      u"Elevation data allows the model to determine areas "
                      u"within the AOI's land-seascape where point features "
                      u"contributing to negative scenic quality are visible."),
            label=u'Digital Elevation Model (Raster) (Required)',
            validator=self.validator)
        self.general_tab.add_input(self.dem_path)
        self.refraction = inputs.Text(
            args_key=u'refraction',
            helptext=(u"The earth curvature correction option corrects for "
                      u"the curvature of the earth and refraction of visible "
                      u"light in air.  Changes in air density curve the light "
                      u"downward causing an observer to see further and the "
                      u"earth to appear less curved.  While the magnitude of "
                      u"this effect varies with atmospheric conditions, a "
                      u"standard rule of thumb is that refraction of visible "
                      u"light reduces the apparent curvature of the earth by "
                      u"one-seventh.  By default, this model corrects for the "
                      u"curvature of the earth and sets the refractivity "
                      u"coefficient to 0.13."),
            label=u'Refractivity Coefficient (Required)',
            validator=self.validator)
        self.general_tab.add_input(self.refraction)
        self.valuation_container = inputs.Container(args_key=u'do_valuation',
                                                    expandable=True,
                                                    expanded=False,
                                                    interactive=True,
                                                    label=u'Valuation')
        self.add_input(self.valuation_container)
        self.valuation_function = inputs.Dropdown(
            args_key=u'valuation_function',
            helptext=(u"This field indicates the functional form f(x) the "
                      u"model will use to value the visual impact for each "
                      u"viewpoint."),
            label=u'Valuation Function',
            options=[
                u'linear: a + bx', u'logarithmic: a + b log(x+1)',
                u'exponential: a * e^(-bx)'
            ])
        self.valuation_container.add_input(self.valuation_function)
        self.a_coefficient = inputs.Text(
            args_key=u'a_coef',
            helptext=(u"First coefficient used by the valuation function"),
            label=u"'a' Coefficient (Required)",
            validator=self.validator)
        self.valuation_container.add_input(self.a_coefficient)
        self.b_coefficient = inputs.Text(
            args_key=u'b_coef',
            helptext=(u"Second coefficient used by the valuation function"),
            label=u"'b' Coefficient (Required)",
            validator=self.validator)
        self.valuation_container.add_input(self.b_coefficient)
        self.max_valuation_radius = inputs.Text(
            args_key=u'max_valuation_radius',
            helptext=(u"Radius beyond which the valuation is set to zero. "
                      u"The valuation function 'f' cannot be negative at the "
                      u"radius 'r' (f(r)>=0)."),
            label=u'Maximum Valuation Radius (meters) (Required)',
            validator=self.validator)
        self.valuation_container.add_input(self.max_valuation_radius)
Exemple #18
0
    def __init__(self):
        model.InVESTModel.__init__(
            self,
            label=u'Scenic Quality',
            target=scenic_quality.execute,
            validator=scenic_quality.validate,
            localdoc=u'../documentation/scenic_quality.html')

        self.beta_only = inputs.Label(
            text=(
                u"This tool is considered UNSTABLE.  Users may "
                u"experience performance issues and unexpected errors."))
        self.general_tab = inputs.Container(
            interactive=True,
            label=u'General')
        self.add_input(self.general_tab)
        self.aoi_uri = inputs.File(
            args_key=u'aoi_uri',
            helptext=(
                u"An OGR-supported vector file.  This AOI instructs "
                u"the model where to clip the input data and the extent "
                u"of analysis.  Users will create a polygon feature "
                u"layer that defines their area of interest.  The AOI "
                u"must intersect the Digital Elevation Model (DEM)."),
            label=u'Area of Interest (Vector)',
            validator=self.validator)
        self.general_tab.add_input(self.aoi_uri)
        self.cell_size = inputs.Text(
            args_key=u'cell_size',
            helptext=u'Length (in meters) of each side of the (square) cell.',
            label=u'Cell Size (meters)',
            validator=self.validator)
        self.general_tab.add_input(self.cell_size)
        self.structure_uri = inputs.File(
            args_key=u'structure_uri',
            helptext=(
                u"An OGR-supported vector file.  The user must specify "
                u"a point feature layer that indicates locations of "
                u"objects that contribute to negative scenic quality, "
                u"such as aquaculture netpens or wave energy "
                u"facilities.  In order for the viewshed analysis to "
                u"run correctly, the projection of this input must be "
                u"consistent with the project of the DEM input."),
            label=u'Features Impacting Scenic Quality (Vector)',
            validator=self.validator)
        self.general_tab.add_input(self.structure_uri)
        self.dem_uri = inputs.File(
            args_key=u'dem_uri',
            helptext=(
                u"A GDAL-supported raster file.  An elevation raster "
                u"layer is required to conduct viewshed analysis. "
                u"Elevation data allows the model to determine areas "
                u"within the AOI's land-seascape where point features "
                u"contributing to negative scenic quality are visible."),
            label=u'Digital Elevation Model (Raster)',
            validator=self.validator)
        self.general_tab.add_input(self.dem_uri)
        self.refraction = inputs.Text(
            args_key=u'refraction',
            helptext=(
                u"The earth curvature correction option corrects for "
                u"the curvature of the earth and refraction of visible "
                u"light in air.  Changes in air density curve the light "
                u"downward causing an observer to see further and the "
                u"earth to appear less curved.  While the magnitude of "
                u"this effect varies with atmospheric conditions, a "
                u"standard rule of thumb is that refraction of visible "
                u"light reduces the apparent curvature of the earth by "
                u"one-seventh.  By default, this model corrects for the "
                u"curvature of the earth and sets the refractivity "
                u"coefficient to 0.13."),
            label=u'Refractivity Coefficient',
            validator=self.validator)
        self.general_tab.add_input(self.refraction)
        self.pop_uri = inputs.File(
            args_key=u'pop_uri',
            helptext=(
                u"A GDAL-supported raster file.  A population raster "
                u"layer is required to determine population within the "
                u"AOI's land-seascape where point features contributing "
                u"to negative scenic quality are visible and not "
                u"visible."),
            label=u'Population (Raster)',
            validator=self.validator)
        self.general_tab.add_input(self.pop_uri)
        self.overlap_uri = inputs.File(
            args_key=u'overlap_uri',
            helptext=(
                u"An OGR-supported vector file.  The user has the "
                u"option of providing a polygon feature layer where "
                u"they would like to determine the impact of objects on "
                u"visual quality.  This input must be a polygon and "
                u"projected in meters.  The model will use this layer "
                u"to determine what percent of the total area of each "
                u"polygon feature can see at least one of the point "
                u"features impacting scenic quality."),
            label=u'Overlap Analysis Features (Vector)',
            validator=self.validator)
        self.general_tab.add_input(self.overlap_uri)
        self.valuation_tab = inputs.Container(
            interactive=True,
            label=u'Valuation')
        self.add_input(self.valuation_tab)
        self.valuation_function = inputs.Dropdown(
            args_key=u'valuation_function',
            helptext=(
                u"This field indicates the functional form f(x) the "
                u"model will use to value the visual impact for each "
                u"viewpoint.  For distances less than 1 km (x<1), the "
                u"model uses a linear form g(x) where the line passes "
                u"through f(1) (i.e.  g(1) == f(1)) and extends to zero "
                u"with the same slope as f(1) (i.e.  g'(x) == f'(1))."),
            label=u'Valuation Function',
            options=[u'polynomial: a + bx + cx^2 + dx^3',
                     u'logarithmic: a + b ln(x)'])
        self.valuation_tab.add_input(self.valuation_function)
        self.a_coefficient = inputs.Text(
            args_key=u'a_coefficient',
            helptext=(
                u"First coefficient used either by the polynomial or "
                u"by the logarithmic valuation function."),
            label=u"'a' Coefficient (polynomial/logarithmic)",
            validator=self.validator)
        self.valuation_tab.add_input(self.a_coefficient)
        self.b_coefficient = inputs.Text(
            args_key=u'b_coefficient',
            helptext=(
                u"Second coefficient used either by the polynomial or "
                u"by the logarithmic valuation function."),
            label=u"'b' Coefficient (polynomial/logarithmic)",
            validator=self.validator)
        self.valuation_tab.add_input(self.b_coefficient)
        self.c_coefficient = inputs.Text(
            args_key=u'c_coefficient',
            helptext=u"Third coefficient for the polynomial's quadratic term.",
            label=u"'c' Coefficient (polynomial only)",
            validator=self.validator)
        self.valuation_tab.add_input(self.c_coefficient)
        self.d_coefficient = inputs.Text(
            args_key=u'd_coefficient',
            helptext=u"Fourth coefficient for the polynomial's cubic exponent.",
            label=u"'d' Coefficient (polynomial only)",
            validator=self.validator)
        self.valuation_tab.add_input(self.d_coefficient)
        self.max_valuation_radius = inputs.Text(
            args_key=u'max_valuation_radius',
            helptext=(
                u"Radius beyond which the valuation is set to zero. "
                u"The valuation function 'f' cannot be negative at the "
                u"radius 'r' (f(r)>=0)."),
            label=u'Maximum Valuation Radius (meters)',
            validator=self.validator)
        self.valuation_tab.add_input(self.max_valuation_radius)
Exemple #19
0
    def __init__(self):
        model.InVESTModel.__init__(self,
                                   label=u'Marine Aquaculture: Finfish',
                                   target=finfish_aquaculture.execute,
                                   validator=finfish_aquaculture.validate,
                                   localdoc=u'marine_fish.html')

        self.farm_location = inputs.File(
            args_key=u'ff_farm_loc',
            helptext=(u"An OGR-supported vector file containing polygon or "
                      u"point, with a latitude and longitude value and a "
                      u"numerical identifier for each farm.  File can be "
                      u"named anything, but no spaces in the "
                      u"name.<br><br>File type: polygon shapefile or "
                      u".gdb<br>Rows: each row is a specific netpen or entire "
                      u"aquaculture farm<br>Columns: columns contain "
                      u"attributes about each netpen (area, location, "
                      u"etc.).<br>Sample data set: "
                      u"\InVEST\Aquaculture\Input\Finfish_Netpens.shp"),
            label=u'Finfish Farm Location (Vector)',
            validator=self.validator)
        self.add_input(self.farm_location)
        self.farm_identifier = inputs.Dropdown(
            args_key=u'farm_ID',
            helptext=(u"The name of a column heading used to identify each "
                      u"farm and link the spatial information from the "
                      u"shapefile to subsequent table input data (farm "
                      u"operation and daily water temperature at farm "
                      u"tables). Additionally, the numbers underneath this "
                      u"farm identifier name must be unique integers for all "
                      u"the inputs."),
            interactive=False,
            options=(
                'UNKNOWN', ),  # No options until valid OGR vector provided
            label=u'Farm Identifier Name')
        self.add_input(self.farm_identifier)
        self.param_a = inputs.Text(
            args_key=u'g_param_a',
            helptext=(u"Default a  = (0.038 g/day). If the user chooses to "
                      u"adjust these parameters, we recommend using them in "
                      u"the simple growth model to determine if the time "
                      u"taken for a fish to reach a target harvest weight "
                      u"typical for the region of interest is accurate."),
            label=u'Fish Growth Parameter (a)',
            validator=self.validator)
        self.add_input(self.param_a)
        self.param_b = inputs.Text(
            args_key=u'g_param_b',
            helptext=(u"Default b  = (0.6667 g/day). If the user chooses to "
                      u"adjust these parameters, we recommend using them in "
                      u"the simple growth model to determine if the time "
                      u"taken for a fish to reach a target harvest weight "
                      u"typical for the region of interest is accurate."),
            label=u'Fish Growth Parameter (b)',
            validator=self.validator)
        self.add_input(self.param_b)
        self.param_tau = inputs.Text(
            args_key=u'g_param_tau',
            helptext=(u"Default tau = (0.08 C^-1).  Specifies how sensitive "
                      u"finfish growth is to temperature.  If the user "
                      u"chooses to adjust these parameters, we recommend "
                      u"using them in the simple growth model to determine if "
                      u"the time taken for a fish to reach a target harvest "
                      u"weight typical for the region of interest is "
                      u"accurate."),
            label=u'Fish Growth Parameter (tau)',
            validator=self.validator)
        self.add_input(self.param_tau)
        self.uncertainty_data_container = inputs.Container(
            args_key=u'use_uncertainty',
            expandable=True,
            label=u'Enable Uncertainty Analysis')
        self.add_input(self.uncertainty_data_container)
        self.param_a_sd = inputs.Text(
            args_key=u'g_param_a_sd',
            helptext=(u"Standard deviation for fish growth parameter a. "
                      u"This indicates the level of uncertainty in the "
                      u"estimate for parameter a."),
            label=u'Standard Deviation for Parameter (a)',
            validator=self.validator)
        self.uncertainty_data_container.add_input(self.param_a_sd)
        self.param_b_sd = inputs.Text(
            args_key=u'g_param_b_sd',
            helptext=(u"Standard deviation for fish growth parameter b. "
                      u"This indicates the level of uncertainty in the "
                      u"estimate for parameter b."),
            label=u'Standard Deviation for Parameter (b)',
            validator=self.validator)
        self.uncertainty_data_container.add_input(self.param_b_sd)
        self.num_monte_carlo_runs = inputs.Text(
            args_key=u'num_monte_carlo_runs',
            helptext=(u"Number of runs of the model to perform as part of a "
                      u"Monte Carlo simulation.  A larger number will tend to "
                      u"produce more consistent and reliable output, but will "
                      u"also take longer to run."),
            label=u'Number of Monte Carlo Simulation Runs',
            validator=self.validator)
        self.uncertainty_data_container.add_input(self.num_monte_carlo_runs)
        self.water_temperature = inputs.File(
            args_key=u'water_temp_tbl',
            helptext=(u"Users must provide a time series of daily water "
                      u"temperature (C) for each farm in the shapefile.  When "
                      u"daily temperatures are not available, users can "
                      u"interpolate seasonal or monthly temperatures to a "
                      u"daily resolution.  Water temperatures collected at "
                      u"existing aquaculture facilities are preferable, but "
                      u"if unavailable, users can consult online sources such "
                      u"as NOAAs 4 km AVHRR Pathfinder Data and Canadas "
                      u"Department of Fisheries and Oceans Oceanographic "
                      u"Database.  The most appropriate temperatures to use "
                      u"are those from the upper portion of the water column, "
                      u"which are the temperatures experienced by the fish in "
                      u"the netpens."),
            label=u'Table of Daily Water Temperature at Farm (CSV)',
            validator=self.validator)
        self.add_input(self.water_temperature)
        self.farm_operations = inputs.File(
            args_key=u'farm_op_tbl',
            helptext=(u"A table of general and farm-specific operations "
                      u"parameters.  Please refer to the sample data table "
                      u"for reference to ensure correct incorporation of data "
                      u"in the model.<br><br>The values for 'farm operations' "
                      u"(applied to all farms) and 'add new farms' (beginning "
                      u"with row 32) may be modified according to the user's "
                      u"needs . However, the location of cells in this "
                      u"template must not be modified.  If for example, if "
                      u"the model is to run for three farms only, the farms "
                      u"should be listed in rows 10, 11 and 12 (farms 1, 2, "
                      u"and 3, respectively). Several default values that are "
                      u"applicable to Atlantic salmon farming in British "
                      u"Columbia are also included in the sample data table."),
            label=u'Farm Operations Table (CSV)',
            validator=self.validator)
        self.add_input(self.farm_operations)
        self.outplant_buffer = inputs.Text(
            args_key=u'outplant_buffer',
            helptext=(u"This value will allow the outplant start day to "
                      u"start plus or minus the number of days specified "
                      u"here."),
            label=u'Outplant Date Buffer',
            validator=self.validator)
        self.add_input(self.outplant_buffer)
        self.valuation = inputs.Checkbox(
            args_key=u'do_valuation',
            helptext=(u"By checking this box, a valuation analysis will be "
                      u"run on the model."),
            label=u'Run Valuation?')
        self.add_input(self.valuation)
        self.market_price = inputs.Text(
            args_key=u'p_per_kg',
            helptext=(u"Default value comes from Urner-Berry monthly fresh "
                      u"sheet reports on price of farmed Atlantic salmon."),
            interactive=False,
            label=u'Market Price per Kilogram of Processed Fish',
            validator=self.validator)
        self.add_input(self.market_price)
        self.fraction_price = inputs.Text(
            args_key=u'frac_p',
            helptext=(u"Fraction of market price that accounts for costs "
                      u"rather than profit.  Default value is 0.3 (30%)."),
            interactive=False,
            label=u'Fraction of Price that Accounts to Costs',
            validator=self.validator)
        self.add_input(self.fraction_price)
        self.discount_rate = inputs.Text(
            args_key=u'discount',
            helptext=(u"We use a 7% annual discount rate, adjusted to a "
                      u"daily rate of 0.000192 for 0.0192% (7%/365 days)."),
            interactive=False,
            label=u'Daily Market Discount Rate',
            validator=self.validator)
        self.add_input(self.discount_rate)

        # Set interactivity, requirement as input sufficiency changes
        self.farm_location.sufficiency_changed.connect(
            self.farm_identifier.set_interactive)
        self.farm_location.sufficiency_changed.connect(self._load_colnames)
        self.valuation.sufficiency_changed.connect(
            self.market_price.set_interactive)
        self.valuation.sufficiency_changed.connect(
            self.fraction_price.set_interactive)
        self.valuation.sufficiency_changed.connect(
            self.discount_rate.set_interactive)