Exemple #1
0
def df_api_lideres(temporada, tipo):
    response = leagueleaders.LeagueLeaders(season=temporada,
                                           season_type_all_star=tipo)
    df = response.get_data_frames()[0]
    #df.head(10)
    df1 = df[['PLAYER_ID', 'RANK', 'PLAYER', 'TEAM', 'AST', 'PTS']]
    df1 = df1.head(20)
    return df1
Exemple #2
0
def league_leaders():
    leaders = leagueleaders.LeagueLeaders()
    leaders_df = leaders.get_data_frames()[0]
    ranking_df = leaders_df[['PLAYER', 'RANK']]

    #LeagueLeader rank added to df
    ll_joined = pd.merge(df,
                         ranking_df,
                         left_on=['full_name'],
                         right_on=['PLAYER'])
    ll_joined.to_csv('NBARANK.csv')
Exemple #3
0
def perGame():
    data = leagueleaders.LeagueLeaders()
    df = data.league_leaders.get_data_frame()
    was, stats = df[df.TEAM == 'WAS'], ['PTS', 'REB', 'AST', 'STL']
    wash_per = was[stats].div(was['GP'], axis=0).round(1)
    wash_per = pd.concat([was['PLAYER'], wash_per], axis=1)
    # wash_per.PLAYER = wash_per.PLAYER.str.split(n=1).str[1]
    wash_per = wash_per.set_index('PLAYER')
    return tabulate(wash_per,
                    tablefmt='pipe',
                    headers='keys',
                    colalign=("left", "center", "center", "center", "center"),
                    floatfmt=".1f")
Exemple #4
0
 def getLeagueLeaderInfo(self,
                         league_num="00",
                         mode="PerGame",
                         my_scope="S",
                         my_season="2018-19",
                         my_type="Regular Season",
                         category="PTS"):
     leader_info = leagueleaders.LeagueLeaders(
         league_id=league_num,
         per_mode48=mode,
         scope=my_scope,
         season=my_season,
         season_type_all_star=my_type,
         stat_category_abbreviation=category)
     with open('nba.json', 'w') as fp:
         json.dump(leader_info.get_dict(), fp, indent=3)
     return leader_info.get_dict()
#this file uses the nba_api to create and then concatenate dataframes of each seasons' league leaders for major statistics only
#import endpoints and necessary parameters for the api
from nba_api.stats.endpoints import leagueleaders
from nba_api.stats.library.parameters import PerMode48
import pandas as pd

#reads in seasons and formats as a list
seasons_df = pd.read_excel(io='years_nba.xlsx')
seasons_list = [row['seasons'] for index, row in seasons_df.iterrows()]

#obtain most recent year's league leaders data as pergame averages data
league_leaders_upto_2020_raw = leagueleaders.LeagueLeaders(
    per_mode48=PerMode48.per_game, season=seasons_list[0])
stats_upto_2020_df = league_leaders_upto_2020_raw.get_data_frames()[0]

#add column of year
num_rows = stats_upto_2020_df.shape[0]
year = [seasons_list[0]] * num_rows
stats_upto_2020_df['Year'] = year

#obtain each years' data, format as dataframe, and then concatenate with original dataframe
for nba_season in seasons_list:
    if nba_season == seasons_list[0]:
        continue
    stats_raw = leagueleaders.LeagueLeaders(per_mode48=PerMode48.per_game,
                                            season=nba_season)
    stats_df = stats_raw.get_data_frames()[0]

    num_rows = stats_df.shape[0]
    year = [nba_season] * num_rows
    stats_df['Year'] = year
Exemple #6
0
from nba_api.stats.endpoints import commonteamroster
import json

roster_info = commonteamroster.CommonTeamRoster(season=2017,
                                                team_id=1610612739)
roster_cavs = roster_info.get_dict()

with open('nba.json', 'w') as fp:
    json.dump(roster_cavs, fp, indent=3)

a = roster_cavs['resultSets']
b = a[0]
c = b['rowSet']

for player in c:
    print(player[3])

from nba_api.stats.endpoints import leagueleaders

league_info = leagueleaders.LeagueLeaders(
    league_id="00",
    per_mode48="PerGame",
    scope="S",
    season="2018-19",
    season_type_all_star="Regular Season",
    stat_category_abbreviation="PTS")
print(league_info.get_dict())

with open('nba.json', 'w') as fp:
    json.dump(league_info.get_dict(), fp, indent=3)
    player_or_team="Player", pt_measure_type="SpeedDistance")
stats_drives = leaguedashptstats.LeagueDashPtStats(player_or_team="Player",
                                                   pt_measure_type="Drives")
stats_catchshoot = leaguedashptstats.LeagueDashPtStats(
    player_or_team="Player", pt_measure_type="CatchShoot")
stats_pullup = leaguedashptstats.LeagueDashPtStats(
    player_or_team="Player", pt_measure_type="PullUpShot")
stats_postup = leaguedashptstats.LeagueDashPtStats(player_or_team="Player",
                                                   pt_measure_type="PostTouch")
stats_passing = leaguedashptstats.LeagueDashPtStats(player_or_team="Player",
                                                    pt_measure_type="Passing")
stats_possession = leaguedashptstats.LeagueDashPtStats(
    player_or_team="Player", pt_measure_type="Possessions")
stats_rebounding = leaguedashptstats.LeagueDashPtStats(
    player_or_team="Player", pt_measure_type="Rebounding")
stats_leagueleaders = leagueleaders.LeagueLeaders()

player_ids = set()  #[player['id'] for player in players.get_active_players()]
player_ids_ignore = set()
# Heights and weights were causing issues trying to connect to the commonplayerinfo endpoint, so they have been omitted
#player_heights = []
#player_weights = []
#for player_id in player_ids:
#    try:
#        height_string = commonplayerinfo.CommonPlayerInfo(player_id=player_id).common_player_info.data['data'][0][10].split('-')
#        if len(height_string) is 2:
#            player_heights.append(int(height_string[0]) * 12 + int(height_string[1])) # convert height to inches
#        else: #No data available
#            player_ids_ignore.append(player_id)
#    except:#connection error
#        player_ids_ignore.append(player_id)
Exemple #8
0
#   fetchdata.py
#   Gets league leader statistics from NBA-API and writes to text file "stats.txt"

import pandas as pd
from nba_api.stats.endpoints import leagueleaders  # importing league leaders

lleaders2020 = leagueleaders.LeagueLeaders(league_id="00")
lleaders_df = lleaders2020.get_data_frames()[0]  # creating data frame
#sort stats
counter = 0  # count amount of players in list
PlayerList = []
for index, row in lleaders_df.iterrows():  # iterate through dataframe
    statlist = []
    counter += 1
    if counter <= 40:
        PPG = round(row["PTS"] / row["GP"], 1)  # calculate stat/game
        RPG = round(row["REB"] / row["GP"], 1)
        APG = round(row["AST"] / row["GP"], 1)
        BPG = round(row["BLK"] / row["GP"], 1)
        SPG = round(row["STL"] / row["GP"], 1)
        statlist.append(row["PLAYER"])
        statlist.append(row["TEAM"])
        statlist.append(PPG)  # append to list
        statlist.append(RPG)
        statlist.append(APG)
        statlist.append(BPG)
        statlist.append(SPG)
        PlayerList.append(statlist)
#write to file
stats = open("stats.txt", "w")  # open file
for p in PlayerList: