Exemple #1
0
def main():
    # https://keras.io/layers/recurrent/
    num_samples, time_steps, input_dim, output_dim = 50_000, 10, 1, 1

    # Definition of the model.
    model = NBeatsNet(backcast_length=time_steps, forecast_length=output_dim,
                      stack_types=(NBeatsNet.GENERIC_BLOCK, NBeatsNet.GENERIC_BLOCK), nb_blocks_per_stack=2,
                      thetas_dim=(4, 4), share_weights_in_stack=True, hidden_layer_units=64)

    # Definition of the objective function and the optimizer.
    model.compile_model(loss='mae', learning_rate=1e-5)

    # Definition of the data. The problem to solve is to find f such as | f(x) - y | -> 0.
    x = np.random.uniform(size=(num_samples, time_steps, input_dim))
    y = np.mean(x, axis=1, keepdims=True)

    # Split data into training and testing datasets.
    c = num_samples // 10
    x_train, y_train, x_test, y_test = x[c:], y[c:], x[:c], y[:c]

    # Train the model.
    model.fit(x_train, y_train, validation_data=(x_test, y_test), epochs=2, batch_size=128)

    # Save the model for later.
    model.save('n_beats_model.h5')

    # Predict on the testing set.
    predictions = model.predict(x_test)
    print(predictions.shape)

    # Load the model.
    model2 = NBeatsNet.load('n_beats_model.h5')

    predictions2 = model2.predict(x_test)
    np.testing.assert_almost_equal(predictions, predictions2)
Exemple #2
0
def main():
    args = get_script_arguments()
    model = NBeatsNet()
    if args.test:
        model.steps = 5
    model.compile_model(loss='mae', learning_rate=1e-5)
    train_model(model, args.task)
def main():
    # https://keras.io/layers/recurrent/
    num_samples, time_steps, input_dim, output_dim = 50_000, 10, 1, 1

    # Definition of the model.
    model_keras = NBeatsKeras(backcast_length=time_steps, forecast_length=output_dim,
                              stack_types=(NBeatsKeras.GENERIC_BLOCK, NBeatsKeras.GENERIC_BLOCK),
                              nb_blocks_per_stack=2, thetas_dim=(4, 4), share_weights_in_stack=True,
                              hidden_layer_units=64)

    model_pytorch = NBeatsPytorch(backcast_length=time_steps, forecast_length=output_dim,
                                  stack_types=(NBeatsPytorch.GENERIC_BLOCK, NBeatsPytorch.GENERIC_BLOCK),
                                  nb_blocks_per_stack=2, thetas_dim=(4, 4), share_weights_in_stack=True,
                                  hidden_layer_units=64)

    # Definition of the objective function and the optimizer.
    model_keras.compile(loss='mae', optimizer='adam')
    model_pytorch.compile(loss='mae', optimizer='adam')

    # Definition of the data. The problem to solve is to find f such as | f(x) - y | -> 0.
    # where f = np.mean.
    x = np.random.uniform(size=(num_samples, time_steps, input_dim))
    y = np.mean(x, axis=1, keepdims=True)

    # Split data into training and testing datasets.
    c = num_samples // 10
    x_train, y_train, x_test, y_test = x[c:], y[c:], x[:c], y[:c]
    test_size = len(x_test)

    # Train the model.
    print('Keras training...')
    model_keras.fit(x_train, y_train, validation_data=(x_test, y_test), epochs=20, batch_size=128)
    print('Pytorch training...')
    model_pytorch.fit(x_train, y_train, validation_data=(x_test, y_test), epochs=20, batch_size=128)

    # Save the model for later.
    model_keras.save('n_beats_model.h5')
    model_pytorch.save('n_beats_pytorch.th')

    # Predict on the testing set (forecast).
    predictions_keras_forecast = model_keras.predict(x_test)
    predictions_pytorch_forecast = model_pytorch.predict(x_test)
    np.testing.assert_equal(predictions_keras_forecast.shape, (test_size, model_keras.forecast_length, output_dim))
    np.testing.assert_equal(predictions_pytorch_forecast.shape, (test_size, model_pytorch.forecast_length, output_dim))

    # Predict on the testing set (backcast).
    predictions_keras_backcast = model_keras.predict(x_test, return_backcast=True)
    predictions_pytorch_backcast = model_pytorch.predict(x_test, return_backcast=True)
    np.testing.assert_equal(predictions_keras_backcast.shape, (test_size, model_keras.backcast_length, output_dim))
    np.testing.assert_equal(predictions_pytorch_backcast.shape, (test_size, model_pytorch.backcast_length, output_dim))

    # Load the model.
    model_keras_2 = NBeatsKeras.load('n_beats_model.h5')
    model_pytorch_2 = NBeatsPytorch.load('n_beats_pytorch.th')

    np.testing.assert_almost_equal(predictions_keras_forecast, model_keras_2.predict(x_test))
    np.testing.assert_almost_equal(predictions_pytorch_forecast, model_pytorch_2.predict(x_test))
Exemple #4
0
def main():
    num_rows = 100
    num_columns = 4
    timesteps = 20
    d = pd.DataFrame(data=np.random.uniform(size=(num_rows, num_columns)), columns=['A', 'B', 'C', 'D'])
    print(d.head())

    # Use <A, B, C> to predict D.
    predictors = d[['A', 'B', 'C']]
    targets = d['D']

    # backcast length is timesteps.
    # forecast length is 1.
    predictors = np.array([predictors[i:i + timesteps] for i in range(num_rows - timesteps)])
    targets = np.array([targets[i:i + 1] for i in range(num_rows - timesteps)])[:, :, None]

    # noinspection PyArgumentEqualDefault
    model_keras = NBeatsKeras(
        input_dim=num_columns - 1,
        output_dim=1,
        forecast_length=1,
        nb_blocks_per_stack=1,
        backcast_length=timesteps
    )
    # plot_model(model_keras, 'pandas.png', show_shapes=True, show_dtype=True)
    model_keras.compile(loss='mae', optimizer='adam')

    model_keras.fit(predictors, targets, validation_split=0.2)

    num_predictions = len(predictors)
    predictions = model_keras.predict(predictors)
    np.testing.assert_equal(predictions.shape, (num_predictions, 1, 1))
    d['P'] = [np.nan] * (num_rows - num_predictions) + list(model_keras.predict(predictors).squeeze(axis=(1, 2)))
    print(d)
Exemple #5
0
def main():
    args = get_script_arguments()

    # m4
    if args.task in ['m4', 'dummy']:
        model = NBeatsNet(backcast_length=10,
                          forecast_length=1,
                          stack_types=(NBeatsNet.GENERIC_BLOCK,
                                       NBeatsNet.GENERIC_BLOCK),
                          nb_blocks_per_stack=2,
                          thetas_dim=(4, 4),
                          share_weights_in_stack=True,
                          hidden_layer_units=128)

    # kcg
    elif args.task == 'kcg':
        model = NBeatsNet(input_dim=2,
                          backcast_length=360,
                          forecast_length=10,
                          stack_types=(NBeatsNet.TREND_BLOCK,
                                       NBeatsNet.SEASONALITY_BLOCK),
                          nb_blocks_per_stack=3,
                          thetas_dim=(4, 8),
                          share_weights_in_stack=False,
                          hidden_layer_units=256,
                          experimental_features=False)

    # nrj
    elif args.task == 'nrj':
        model = NBeatsNet(input_dim=1,
                          exo_dim=2,
                          backcast_length=10,
                          forecast_length=1,
                          stack_types=(NBeatsNet.TREND_BLOCK,
                                       NBeatsNet.SEASONALITY_BLOCK),
                          nb_blocks_per_stack=2,
                          thetas_dim=(4, 8),
                          share_weights_in_stack=False,
                          hidden_layer_units=128,
                          experimental_features=False)

    model.compile_model(loss='mae', learning_rate=1e-5)
    train_model(model, args.task, is_test=args.test)
Exemple #6
0
    def test_thetas_stack_types_same_length(self):

        try:
            NBeatsNet(
                stack_types=(
                    NBeatsNet.TREND_BLOCK,
                    NBeatsNet.SEASONALITY_BLOCK,
                    NBeatsNet.GENERIC_BLOCK,
                ),
                nb_blocks_per_stack=3,
                forecast_length=2,
                backcast_length=10,
                thetas_dim=(4, 8),
                share_weights_in_stack=True,  # just change it to True.
                hidden_layer_units=64)
            raise Exception('Test fail.')
        except AssertionError:
            pass
Exemple #7
0
def main():
    # Let's consider a setup where we have [sunshine] and [rainfall] and we want to predict [rainfall].
    # [sunshine] will be our external variable (endogenous).
    # [rainfall] will be our internal variable (endogenous).
    # We assume that rainfall[t] depends on the previous values of rainfall[t-1], ... rainfall[t-N].
    # And we also think that rainfall[t] depends on sunshine.
    # Rainfall is 1-D so input_dim=1. We have just one exo variable so exo_dim=1.
    # Output_dim is also 1-D. It's rainfall[t]. Therefore, output_dim=1.
    # We have long sequences of rainfall[t], sunshine[t] (t>0) that we cut into length N+1.
    # N will be the history. and +1 is the one we want to predict.
    # N-Beats is not like an LSTM. It needs the history window to be finite (of size N<inf).
    # here N=time_steps. Let's say 20.
    # We end of having an arbitrary number of sequences (say 100) of length 20+1.
    num_samples, time_steps, input_dim, output_dim, exo_dim = 1000, 20, 1, 1, 1

    # Definition of the model.
    # NOTE: If you choose the Keras backend with input_dim>1, you have
    # to set the value here too (in the constructor).
    model_keras = NBeatsKeras(input_dim=input_dim,
                              backcast_length=time_steps,
                              forecast_length=output_dim,
                              exo_dim=exo_dim)

    # from keras.utils.vis_utils import plot_model
    # plot_model(model_keras, 'exo.png')

    model_keras.compile(loss='mae', optimizer='adam')
    rainfall = np.random.uniform(size=(num_samples, time_steps + 1, input_dim))

    # predictors.
    x_rainfall = rainfall[:, 0:time_steps, :]
    x_sunshine = np.random.uniform(size=(num_samples, time_steps, 1))

    # target.
    y_rainfall = rainfall[:, time_steps:, :]

    model_keras.compile(loss='mae', optimizer='adam')
    model_keras.fit([x_rainfall, x_sunshine], y_rainfall, epochs=10)

    np.testing.assert_equal(
        model_keras.predict([x_rainfall, x_sunshine]).shape, (1000, 1, 1))
def main():
    args = get_script_arguments()

    if args.task in ['m4', 'dummy']:
        model = NBeatsNet(backcast_length=10,
                          forecast_length=1,
                          stack_types=(NBeatsNet.GENERIC_BLOCK,
                                       NBeatsNet.GENERIC_BLOCK),
                          nb_blocks_per_stack=2,
                          thetas_dim=(4, 4),
                          share_weights_in_stack=True,
                          hidden_layer_units=128)
    elif args.task == 'kcg':
        model = NBeatsNet(input_dim=2,
                          backcast_length=360,
                          forecast_length=10,
                          stack_types=(NBeatsNet.TREND_BLOCK,
                                       NBeatsNet.SEASONALITY_BLOCK),
                          nb_blocks_per_stack=3,
                          thetas_dim=(4, 8),
                          share_weights_in_stack=False,
                          hidden_layer_units=256)
    elif args.task == 'nrj':
        model = NBeatsNet(input_dim=1,
                          exo_dim=2,
                          backcast_length=10,
                          forecast_length=1,
                          stack_types=(NBeatsNet.TREND_BLOCK,
                                       NBeatsNet.SEASONALITY_BLOCK),
                          nb_blocks_per_stack=2,
                          thetas_dim=(4, 8),
                          share_weights_in_stack=False,
                          hidden_layer_units=128,
                          nb_harmonics=10)
    else:
        raise ValueError('Unknown task.')

    model.compile(loss='mae', optimizer='adam')
    train_model(model, args.task, is_test=args.test)
Exemple #9
0
    def test_share_weights_count_params(self):
        m = NBeatsNet(stack_types=(NBeatsNet.TREND_BLOCK,
                                   NBeatsNet.SEASONALITY_BLOCK),
                      nb_blocks_per_stack=3,
                      forecast_length=2,
                      backcast_length=10,
                      thetas_dim=(4, 8),
                      share_weights_in_stack=False,
                      hidden_layer_units=64)

        self.assertEqual(m.count_params(), 80512)

        m2 = NBeatsNet(
            stack_types=(NBeatsNet.TREND_BLOCK, NBeatsNet.SEASONALITY_BLOCK),
            nb_blocks_per_stack=3,
            forecast_length=2,
            backcast_length=10,
            thetas_dim=(4, 8),
            share_weights_in_stack=True,  # just change it to True.
            hidden_layer_units=64)

        self.assertEqual(m2.count_params(),
                         (80512 + 128) // 3)  # nb_blocks_per_stack=3

        m3 = NBeatsNet(
            stack_types=(
                NBeatsNet.TREND_BLOCK,
                NBeatsNet.SEASONALITY_BLOCK,
                NBeatsNet.GENERIC_BLOCK,
            ),
            nb_blocks_per_stack=3,
            forecast_length=2,
            backcast_length=10,
            thetas_dim=(4, 8, 4),
            share_weights_in_stack=True,  # just change it to True.
            hidden_layer_units=64)

        self.assertEqual(len(m3.weights), len(m3.stack_types))
Exemple #10
0
def main():
    pd.set_option('display.max_rows', None)
    pd.set_option('display.max_columns', None)
    pd.set_option('display.width', None)

    zip_path = tf.keras.utils.get_file(
        origin=
        'https://storage.googleapis.com/tensorflow/tf-keras-datasets/jena_climate_2009_2016.csv.zip',
        fname='jena_climate_2009_2016.csv.zip',
        extract=True)
    csv_path, _ = os.path.splitext(zip_path)
    df = pd.read_csv(csv_path)
    print(csv_path)
    print(df.head())
    print(len(df))

    def univariate_data(dataset, start_index, end_index, history_size,
                        target_size):
        data = []
        labels = []

        start_index = start_index + history_size
        if end_index is None:
            end_index = len(dataset) - target_size

        for i in range(start_index, end_index):
            indices = range(i - history_size, i)
            # Reshape data from (history_size,) to (history_size, 1)
            data.append(np.reshape(dataset[indices], (history_size, 1)))
            labels.append(dataset[i + target_size])
        data = np.array(data)
        labels = np.array(labels)
        return data.reshape(data.shape[0], data.shape[1],
                            1), labels.reshape(labels.shape[0], 1, 1)

    TRAIN_SPLIT = 300000
    tf.random.set_seed(13)

    uni_data = df['T (degC)']
    uni_data.index = df['Date Time']

    uni_data = uni_data.values

    class DataNormalizer:
        def __init__(self, train):
            self.uni_train_mean = train.mean()
            self.uni_train_std = train.std()

        def apply(self, x):
            return (x - self.uni_train_mean) / self.uni_train_std

        def apply_inv(self, x):
            return x * self.uni_train_std + self.uni_train_mean

    dn = DataNormalizer(train=uni_data[:TRAIN_SPLIT])
    uni_train_mean = uni_data[:TRAIN_SPLIT].mean()
    uni_train_std = uni_data[:TRAIN_SPLIT].std()

    uni_data = dn.apply(uni_data)

    # plt.plot(uni_data)
    # plt.show()

    univariate_past_history = 20
    univariate_future_target = 0

    x_train_uni, y_train_uni = univariate_data(uni_data, 0, TRAIN_SPLIT,
                                               univariate_past_history,
                                               univariate_future_target)
    x_val_uni, y_val_uni = univariate_data(uni_data, TRAIN_SPLIT, None,
                                           univariate_past_history,
                                           univariate_future_target)

    print('x_train_uni.shape=', x_train_uni.shape)
    print('y_train_uni.shape=', y_train_uni.shape)
    print('x_val_uni.shape=', x_val_uni.shape)
    print('y_val_uni.shape=', y_val_uni.shape)

    b_val_uni = np.mean(x_val_uni, axis=1)[..., 0]
    # print(np.mean(np.abs(b_val_uni - y_val_uni)))
    # print(np.mean(np.abs(dn.apply_inv(b_val_uni) - dn.apply_inv(y_val_uni))))

    b2_val_uni = x_val_uni[:, -1, 0]
    # print(np.mean(np.abs(b2_val_uni - y_val_uni)))
    # print(np.mean(np.abs(dn.apply_inv(b2_val_uni) - dn.apply_inv(y_val_uni))))

    # Definition of the model.
    m = NBeatsNet(stack_types=(NBeatsNet.GENERIC_BLOCK,
                               NBeatsNet.GENERIC_BLOCK,
                               NBeatsNet.GENERIC_BLOCK),
                  nb_blocks_per_stack=3,
                  forecast_length=1,
                  backcast_length=univariate_past_history,
                  thetas_dim=(15, 15, 15),
                  share_weights_in_stack=False,
                  hidden_layer_units=384)
    m.compile_model(loss='mae', learning_rate=1e-4)

    # Train the model.
    m.fit(
        x_train_uni,
        y_train_uni,
        epochs=20,
        validation_split=0.1,
        shuffle=True,
    )

    # Save the model for later.
    m.save('n_beats_model.h5')

    # Predict on the testing set.

    # Load the model.
    model2 = NBeatsNet.load('n_beats_model.h5')
Exemple #11
0
print('x_val_uni.shape=', x_val_uni.shape)
print('y_val_uni.shape=', y_val_uni.shape)

b_val_uni = np.mean(x_val_uni, axis=1)[..., 0]
print(np.mean(np.abs(b_val_uni - y_val_uni)))
print(np.mean(np.abs(dn.apply_inv(b_val_uni) - dn.apply_inv(y_val_uni))))

b2_val_uni = x_val_uni[:, -1, 0]
print(np.mean(np.abs(b2_val_uni - y_val_uni)))
print(np.mean(np.abs(dn.apply_inv(b2_val_uni) - dn.apply_inv(y_val_uni))))

# noinspection PyArgumentEqualDefault
m = NBeatsNet(
    stack_types=(NBeatsNet.GENERIC_BLOCK, NBeatsNet.GENERIC_BLOCK, NBeatsNet.GENERIC_BLOCK),
    nb_blocks_per_stack=3,
    forecast_length=1,
    backcast_length=univariate_past_history,
    thetas_dim=(15, 15, 15),
    share_weights_in_stack=False,
    hidden_layer_units=384)
m.compile(loss='mae', optimizer='adam')


class EvaluateModelCallback(Callback):

    def on_epoch_end(self, epoch, logs=None):
        b3_val_uni = m.predict(x_val_uni)
        print(f'[{epoch}] b3_val_uni.shape=', b3_val_uni.shape)
        print(np.mean(np.abs(b3_val_uni - y_val_uni)))
        print(np.mean(np.abs(dn.apply_inv(b3_val_uni) - dn.apply_inv(y_val_uni))))
        print('*' * 80)
Exemple #12
0
def train_model(model: NBeatsNet,
                task: str,
                best_perf=np.inf,
                max_steps=10001,
                plot_results=100,
                is_test=False):
    ensure_results_dir()
    # if is_test then override max_steps argument
    if is_test:
        max_steps = 5

    if task == 'dummy':
        x_train, e_train, y_train, x_test, e_test, y_test = generate_data(
            model.backcast_length, model.forecast_length)
    elif task == 'm4':
        x_test, e_test, y_test = get_m4_data_multivariate(
            model.backcast_length, model.forecast_length, is_training=False)
    elif task == 'kcg':
        x_test, e_test, y_test = get_kcg_data(model.backcast_length,
                                              model.forecast_length,
                                              is_training=False)
    elif task == 'nrj':
        x_test, e_test, y_test = get_nrj_data(model.backcast_length,
                                              model.forecast_length,
                                              is_training=False)
    else:
        raise Exception('Unknown task.')

    print('x_test.shape=', x_test.shape)

    for step in range(max_steps):
        if task == 'm4':
            x_train, e_train, y_train = get_m4_data_multivariate(
                model.backcast_length, model.forecast_length, is_training=True)
        if task == 'kcg':
            x_train, e_train, y_train = get_kcg_data(model.backcast_length,
                                                     model.forecast_length,
                                                     is_training=True)
        if task == 'nrj':
            x_train, e_train, y_train = get_nrj_data(model.backcast_length,
                                                     model.forecast_length,
                                                     is_training=True)

        if model.has_exog():
            model.train_on_batch([x_train, e_train], y_train)
        else:
            model.train_on_batch(x_train, y_train)

        if step % plot_results == 0:
            print('step=', step)
            model.save('results/n_beats_model_' + str(step) + '.h5')
            if model.has_exog():
                predictions = model.predict([x_train, e_train])
                validation_predictions = model.predict([x_test, e_test])
            else:
                predictions = model.predict(x_train)
                validation_predictions = model.predict(x_test)
            smape = get_metrics(y_test, validation_predictions)[0]
            print('smape=', smape)
            if smape < best_perf:
                best_perf = smape
                model.save('results/n_beats_model_ongoing.h5')
            for l in range(model.input_dim):
                plot_keras_model_predictions(model,
                                             False,
                                             step,
                                             x_train[0, :, l],
                                             y_train[0, :, l],
                                             predictions[0, :, l],
                                             axis=l)
                plot_keras_model_predictions(model,
                                             True,
                                             step,
                                             x_test[0, :, l],
                                             y_test[0, :, l],
                                             validation_predictions[0, :, l],
                                             axis=l)

    model.save('results/n_beats_model.h5')

    if model.has_exog():
        predictions = model.predict([x_train, e_train])
        validation_predictions = model.predict([x_test, e_test])
    else:
        predictions = model.predict(x_train)
        validation_predictions = model.predict(x_test)

    for l in range(model.input_dim):
        plot_keras_model_predictions(model,
                                     False,
                                     max_steps,
                                     x_train[10, :, l],
                                     y_train[10, :, l],
                                     predictions[10, :, l],
                                     axis=l)
        plot_keras_model_predictions(model,
                                     True,
                                     max_steps,
                                     x_test[10, :, l],
                                     y_test[10, :, l],
                                     validation_predictions[10, :, l],
                                     axis=l)
    print('smape=', get_metrics(y_test, validation_predictions)[0])
    print('error=', get_metrics(y_test, validation_predictions)[1])
def all_code():
    import sys

    if not sys.warnoptions:
        import warnings
        warnings.simplefilter("ignore")
    from IPython.display import Image
    from IPython.display import SVG
    from IPython.display import display
    from ipywidgets import interactive
    import matplotlib.pyplot as plt
    from collections import OrderedDict
    import pandas as pd
    import seaborn as sns
    import numpy as np
    import random
    import re
    from math import sqrt, exp, log
    from sklearn.linear_model import Lasso, Ridge, RidgeCV, SGDRegressor
    from sklearn.preprocessing import MinMaxScaler
    from sklearn.metrics.pairwise import pairwise_distances
    from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score, f1_score, balanced_accuracy_score, accuracy_score
    import keras
    import keras.backend as K
    from keras.callbacks import ModelCheckpoint
    from keras.models import Sequential, Model
    from keras.layers import Dense, Activation, TimeDistributed, RepeatVector, Flatten, Input, Dropout, LSTM, concatenate, Reshape, Conv1D, GlobalMaxPool1D
    from keras.utils import plot_model

    from lionets import LioNets
    from nbeats_keras.model import NBeatsNet
    from Interpretable_PCA import iPCA
    from altruist.altruist import Altruist
    from utilities.evaluation import Evaluation
    from utilities.load_dataset import Load_Dataset

    from lime.lime_text import LimeTextExplainer
    from lime.lime_tabular import LimeTabularExplainer
    fm, feature_names = Load_Dataset.load_data_turbofan(False)

    fm1_train = fm['FaultMode1']['df_train']
    fm1_train_target = fm1_train['RUL'].values
    fm1_test = fm['FaultMode1']['df_test']
    fm1_test_target = fm1_test['RUL'].values

    LSTM_train = fm1_train.drop(columns=[
        't', 'os_1', 'os_2', 'os_3', 's_01', 's_05', 's_06', 's_10', 's_16',
        's_18', 's_19', 's_22', 's_23', 's_24', 's_25', 's_26'
    ])
    LSTM_test = fm1_test.drop(columns=[
        't', 'os_1', 'os_2', 'os_3', 's_01', 's_05', 's_06', 's_10', 's_16',
        's_18', 's_19', 's_22', 's_23', 's_24', 's_25', 's_26'
    ])

    train_units = set(LSTM_train['u'].values)
    test_units = set(LSTM_test['u'].values)

    sensors = [
        's_02', 's_03', 's_04', 's_07', 's_08', 's_09', 's_11', 's_12', 's_13',
        's_14', 's_15', 's_17', 's_20', 's_21'
    ]
    scalers = {}
    for column in sensors:
        scaler = MinMaxScaler(feature_range=(0, 1))
        LSTM_train[column] = scaler.fit_transform(
            LSTM_train[column].values.reshape(-1, 1))
        LSTM_test[column] = scaler.transform(LSTM_test[column].values.reshape(
            -1, 1))
        scalers[column] = scaler

    unit_scalers = {}
    window = 50
    temp_LSTM_x_train = []
    LSTM_y_train = []
    for unit in train_units:
        temp_unit = LSTM_train[LSTM_train['u'] == unit].drop(
            columns=['u', 'RUL']).values
        temp_unit_RUL = LSTM_train[LSTM_train['u'] == unit]['RUL'].values

        for i in range(len(temp_unit) - window +
                       1):  #elekse edw an len temp_unit - window > 0
            temp_instance = []
            for j in range(window):
                temp_instance.append(temp_unit[i + j])
            temp_LSTM_x_train.append(np.array(temp_instance))
            LSTM_y_train.append(temp_unit_RUL[i + window - 1])
    LSTM_y_train = np.array(LSTM_y_train)
    LSTM_x_train = np.array(temp_LSTM_x_train)

    temp_LSTM_x_test = []
    LSTM_y_test = []
    for unit in test_units:
        temp_unit = LSTM_test[LSTM_test['u'] == unit].drop(
            columns=['u', 'RUL']).values
        temp_unit_RUL = LSTM_test[LSTM_test['u'] == unit]['RUL'].values

        for i in range(len(temp_unit) - window +
                       1):  #elekse edw an len temp_unit - window > 0
            temp_instance = []
            for j in range(window):
                temp_instance.append(temp_unit[i + j])
            temp_LSTM_x_test.append(np.array(temp_instance))
            LSTM_y_test.append(temp_unit_RUL[i + window - 1])
    LSTM_y_test = np.array(LSTM_y_test)
    LSTM_x_test = np.array(temp_LSTM_x_test)

    temp_LSTM_y_train = [[i] for i in LSTM_y_train]
    temp_LSTM_y_test = [[i] for i in LSTM_y_test]
    target_scaler = MinMaxScaler()
    target_scaler.fit(temp_LSTM_y_train)
    temp_LSTM_y_train = target_scaler.transform(temp_LSTM_y_train)
    temp_LSTM_y_test = target_scaler.transform(temp_LSTM_y_test)

    def root_mean_squared_error(y_true, y_pred):
        return K.sqrt(K.mean(K.square(y_pred - y_true)))

    feature_names = fm1_train.columns
    encoder_input = Input(shape=(LSTM_x_train[0].shape))

    encoder_x = LSTM(units=80, return_sequences=True,
                     activation='tanh')(encoder_input)
    encoder_x = Dropout(0.7)(encoder_x)
    encoder_x = LSTM(units=40, return_sequences=False,
                     activation='tanh')(encoder_x)

    encoder_y = Conv1D(filters=40, kernel_size=3,
                       activation='tanh')(encoder_input)
    encoder_y = GlobalMaxPool1D()(encoder_y)

    encoded = concatenate([encoder_x, encoder_y])
    encoded = Dropout(0.7)(encoded)
    encoded = Dense(80, activation='tanh')(encoded)  #Relu and selu
    encoded = Dropout(0.7)(encoded)
    encoded = Dense(40, activation='tanh')(encoded)  #Relu and selu
    predictions = Dense(1, activation='sigmoid')(encoded)  #Relu and selu
    predictor = Model(encoder_input, predictions)

    predictor.compile(optimizer="adam",
                      loss=[root_mean_squared_error],
                      metrics=['mae', 'mse'])

    checkpoint_name = 'TEDS_Predictor_RUL.hdf5'
    checkpoint = ModelCheckpoint(checkpoint_name,
                                 monitor='val_loss',
                                 verbose=2,
                                 save_best_only=True,
                                 mode='auto')

    weights_file = 'weights/TEDS_Predictor_RUL.hdf5'  # choose the best checkpoint few features
    predictor.load_weights(weights_file)  # load it
    predictor.compile(optimizer="adam",
                      loss=[root_mean_squared_error],
                      metrics=['mae', 'mse'])

    temp_pred = target_scaler.inverse_transform(
        predictor.predict(LSTM_x_train))
    predictions = [i[0] for i in temp_pred]

    temp_pred = target_scaler.inverse_transform(predictor.predict(LSTM_x_test))
    predictions = [i[0] for i in temp_pred]

    encoder = Model(input=predictor.input,
                    output=[predictor.layers[-2].output])
    encoder.trainable = False
    encoder.compile(optimizer="adam",
                    loss=[root_mean_squared_error],
                    metrics=['mae', 'mse'])

    encoded_LSTM_x_train = encoder.predict(LSTM_x_train)
    encoded_LSTM_x_test = encoder.predict(LSTM_x_test)

    encoded_input = Input(shape=(encoded_LSTM_x_train[0].shape))
    decoded = Dense(120, activation='tanh')(encoded_input)
    decoded = Dropout(0.5)(decoded)

    decoded_y = RepeatVector(54)(decoded)
    decoded_y = Conv1D(filters=50, kernel_size=5, activation='tanh')(decoded_y)

    decoded_x = RepeatVector(50)(decoded)
    decoded_x = LSTM(units=80, return_sequences=True,
                     activation='tanh')(decoded_x)
    decoded_x = Dropout(0.5)(decoded_x)
    decoded_x = LSTM(units=50, return_sequences=True,
                     activation='tanh')(decoded_x)

    decoded = concatenate([decoded_x, decoded_y])
    decoded = LSTM(50, return_sequences=True, activation='sigmoid')(decoded)
    decoded = Dropout(0.5)(decoded)
    decoded = LSTM(14, return_sequences=True, activation='sigmoid')(decoded)

    decoder = Model(encoded_input, decoded)

    decoder.compile(optimizer="adam",
                    loss=[root_mean_squared_error],
                    metrics=['mae', 'mse'])

    checkpoint_name = 'TEDS_Decoder_RUL.hdf5'
    checkpoint = ModelCheckpoint(checkpoint_name,
                                 monitor='val_loss',
                                 verbose=2,
                                 save_best_only=True,
                                 mode='auto')

    weights_file = 'weights/TEDS_Decoder_RUL.hdf5'  # choose the best checkpoint few features
    decoder.load_weights(weights_file)  # load it
    decoder.compile(optimizer="adam",
                    loss=[root_mean_squared_error],
                    metrics=['mae', 'mse'])

    window = 50
    forecast_timesteps = 5

    temp_fc_x_train = []
    temp_fc_y_train = []
    for unit in train_units:
        temp_unit = LSTM_train[LSTM_train['u'] == unit].drop(
            columns=['u', 'RUL']).values

        for i in range(len(temp_unit) - window - forecast_timesteps +
                       1):  #elekse edw an len temp_unit - window > 0
            temp_instance_x = []
            temp_instance_y = []
            for j in range(window):
                temp_instance_x.append(temp_unit[i + j])
            for z in range(forecast_timesteps):
                temp_instance_y.append(temp_unit[i + j + z + 1])
            temp_fc_x_train.append(np.array(temp_instance_x))
            temp_fc_y_train.append(np.array(temp_instance_y))
    fc_x_train = np.array(temp_fc_x_train)
    fc_y_train = np.array(temp_fc_y_train)

    temp_fc_x_test = []
    temp_fc_y_test = []
    for unit in test_units:
        temp_unit = LSTM_test[LSTM_test['u'] == unit].drop(
            columns=['u', 'RUL']).values

        for i in range(len(temp_unit) - window - forecast_timesteps +
                       1):  #elekse edw an len temp_unit - window > 0
            temp_instance_x = []
            temp_instance_y = []
            for j in range(window):
                temp_instance_x.append(temp_unit[i + j])
            for z in range(forecast_timesteps):
                temp_instance_y.append(temp_unit[i + j + z + 1])
            temp_fc_x_test.append(np.array(temp_instance_x))
            temp_fc_y_test.append(np.array(temp_instance_y))
    fc_x_test = np.array(temp_fc_x_test)
    fc_y_test = np.array(temp_fc_y_test)

    forecast_input = Input(shape=(LSTM_x_train[0].shape))

    forecast_x = LSTM(units=120, return_sequences=True,
                      activation='tanh')(forecast_input)
    forecast_x = Dropout(0.7)(forecast_x)
    forecast_x = LSTM(units=50, return_sequences=True,
                      activation='tanh')(forecast_x)
    forecast_x = Conv1D(filters=50, kernel_size=46,
                        activation='tanh')(forecast_x)

    forecast_y = Conv1D(filters=50, kernel_size=46,
                        activation='tanh')(forecast_input)

    forecast = concatenate([forecast_y, forecast_x])
    forecast = Dropout(0.7)(forecast)
    forecast = LSTM(40, return_sequences=True,
                    activation='relu')(forecast)  #Relu and selu
    forecast = Dropout(0.7)(forecast)
    predictions = LSTM(14, return_sequences=True,
                       activation='linear')(forecast)  #Relu and selu
    forecaster = Model(forecast_input, predictions)
    forecaster.compile(optimizer="adam",
                       loss=[root_mean_squared_error],
                       metrics=['mae', 'mse'])

    checkpoint_name = 'weights/TEDS_Forecaster_RUL.hdf5'
    checkpoint = ModelCheckpoint(checkpoint_name,
                                 monitor='val_loss',
                                 verbose=2,
                                 save_best_only=True,
                                 mode='auto')

    weights_file = 'weights/TEDS_Forecaster_RUL.hdf5'  # choose the best checkpoint few features
    forecaster.load_weights(weights_file)  # load it
    forecaster.compile(optimizer="adam",
                       loss=[root_mean_squared_error],
                       metrics=['mae', 'mse'])

    predictions = forecaster.predict(fc_x_train)
    predictions = forecaster.predict(fc_x_test)

    # Definition of the model.
    nbeats = NBeatsNet(input_dim=14,
                       backcast_length=50,
                       forecast_length=5,
                       stack_types=(NBeatsNet.GENERIC_BLOCK,
                                    NBeatsNet.GENERIC_BLOCK),
                       nb_blocks_per_stack=2,
                       thetas_dim=(4, 4),
                       share_weights_in_stack=True,
                       hidden_layer_units=64)

    # Definition of the objective function and the optimizer.
    nbeats.compile_model(loss='mae', learning_rate=1e-6)

    # Train the model.
    # nbeats.fit(fc_x_train, fc_y_train, verbose=1, validation_split=0.3, epochs=100, batch_size=128)

    # Save the model for later.
    # nbeats.save('weights/TEDS_NBeats_RUL.hdf5')

    # # Load the model.
    nbeats = NBeatsNet.load('weights/TEDS_NBeats_RUL.hdf5')

    window = 50
    forecast_steps = 5

    rul_train, xyz7_x_train, xyz7_y_train, rul_temp = [], [], [], []
    for unit in train_units:
        temp_unit = LSTM_train[LSTM_train['u'] == unit].drop(
            columns=['u', 'RUL']).values
        for i in range(len(temp_unit) - window +
                       1):  # elekse edw an len temp_unit - window > 0
            temp_instance = np.array(temp_unit[i:i + window])
            rul_temp.append(temp_instance)
            xyz7_x_train.append(temp_instance[:-forecast_steps])
            xyz7_y_train.append(temp_instance[-forecast_steps:])

    rul_train = predictor.predict(np.array(rul_temp))
    xyz7_x_train = np.array(xyz7_x_train)
    xyz7_y_train = np.array(xyz7_y_train)

    rul_test, xyz7_x_test, xyz7_y_test, rul_temp = [], [], [], []
    for unit in test_units:
        temp_unit = LSTM_test[LSTM_test['u'] == unit].drop(
            columns=['u', 'RUL']).values
        for i in range(len(temp_unit) - window +
                       1):  # elekse edw an len temp_unit - window > 0
            temp_instance = np.array(temp_unit[i:i + window])
            rul_temp.append(temp_instance)
            xyz7_x_test.append(temp_instance[:-forecast_steps])
            xyz7_y_test.append(temp_instance[-forecast_steps:])

    rul_test = predictor.predict(np.array(rul_temp))
    xyz7_x_test = np.array(xyz7_x_test)
    xyz7_y_test = np.array(xyz7_y_test)

    forecast_input = Input(shape=(xyz7_x_train[0].shape))
    rul_input = Input(shape=(rul_train[0].shape))
    rul = RepeatVector(5)(rul_input)

    forecast_x = LSTM(units=120, return_sequences=True,
                      activation='tanh')(forecast_input)
    forecast_x = Dropout(0.7)(forecast_x)
    forecast_x = LSTM(units=50, return_sequences=True,
                      activation='tanh')(forecast_x)
    forecast_x = Conv1D(filters=50, kernel_size=41,
                        activation='tanh')(forecast_x)
    forecast_x = concatenate([forecast_x, rul])

    forecast_y = Conv1D(filters=50, kernel_size=41,
                        activation='tanh')(forecast_input)
    forecast_y = concatenate([forecast_y, rul])

    forecast = concatenate([forecast_y, forecast_x, rul])
    forecast = Dropout(0.7)(forecast)
    forecast = LSTM(40, return_sequences=True,
                    activation='relu')(forecast)  #Relu and selu
    forecast = concatenate([forecast, rul])
    forecast = Dropout(0.7)(forecast)
    predictions = LSTM(14, return_sequences=True,
                       activation='linear')(forecast)  #Relu and selu

    xyz7_model = Model([forecast_input, rul_input], predictions)
    opt = keras.optimizers.Adam(lr=0.001)
    xyz7_model.compile(optimizer=opt,
                       loss=[root_mean_squared_error],
                       metrics=['mae', 'mse'])

    checkpoint_name = 'weights/TEDS_XYZ7_RUL.hdf5'
    checkpoint = ModelCheckpoint(checkpoint_name,
                                 monitor='val_loss',
                                 verbose=2,
                                 save_best_only=True,
                                 mode='auto')

    weights_file = 'weights/TEDS_XYZ7_RUL.hdf5'  # choose the best checkpoint few features
    xyz7_model.load_weights(weights_file)  # load it
    xyz7_model.compile(optimizer=opt,
                       loss=[root_mean_squared_error],
                       metrics=['mae', 'mse'])

    lionet = LioNets(predictor, decoder, encoder, LSTM_x_train)

    iml_methods = {'LioNets': lionet}  # {'Lime':lime}

    nn_forecasters = {
        'forecaster': forecaster,
        'nbeats': nbeats,
        'xyz7_model': xyz7_model
    }

    return predictor, iml_methods, nn_forecasters, LSTM_x_train, LSTM_y_train, sensors, target_scaler
Exemple #14
0
def train_model(model: NBeatsNet, task: str):
    ensure_results_dir()

    if task == 'dummy':
        x_train, y_train, x_test, y_test = generate_data(model.backcast_length, model.forecast_length)
    elif task == 'm4':
        x_train, y_train = get_m4_data(model.backcast_length, model.forecast_length, is_training=True)
        x_test, y_test = get_m4_data(model.backcast_length, model.forecast_length, is_training=False)
    else:
        raise Exception('Unknown task.')

    # x_test, y_test = get_m4_data(model.backcast_length, model.forecast_length, is_training=False)
    print('x_test.shape=', x_test.shape)

    for step in range(model.steps):
        if task == 'm4':
            x_train, y_train = get_m4_data(model.backcast_length, model.forecast_length, is_training=True)
        model.train_on_batch(x_train, y_train)
        if step % model.plot_results == 0:
            print('step=', step)
            model.save('results/n_beats_model_' + str(step) + '.h5')
            predictions = model.predict(x_train)
            validation_predictions = model.predict(x_test)
            smape = get_metrics(y_test, validation_predictions)[0]
            print('smape=', smape)
            if smape < model.best_perf:
                model.best_perf = smape
                model.save('results/n_beats_model_ongoing.h5')
            plot_keras_model_predictions(model, False, step, x_train[0, :], y_train[0, :], predictions[0, :])
            plot_keras_model_predictions(model, True, step, x_test[0, :], y_test[0, :], validation_predictions[0])

    model.save('results/n_beats_model.h5')

    predictions = model.predict(x_train)
    validation_predictions = model.predict(x_test)
    # plot_keras_model_predictions(model, False, model.steps, x_train[100, :], y_train[100, :], predictions[100, :])
    plot_keras_model_predictions(model, True, model.steps, x_test[10, :], y_test[10, :], validation_predictions[10, :])

    print('smape=', get_metrics(y_test, validation_predictions)[0])
    print('error=', get_metrics(y_test, validation_predictions)[1])