Exemple #1
0
def readcat(path, subsample=False):
    # Only used to compute concentration etc from halo mass
    # thus no need to be accurate.
    CP = cosmology.Cosmology(Omega0_cdm=0.3, h=0.677, Omega0_b=.05)

    cat = BigFileCatalog(path, dataset='LL-0.200')
    if subsample:
        cat = cat[:subsample]

    M0 = cat.attrs['M0'] * 1e10
    if cat.comm.rank == 0:
        cat.logger.info("mass of a particle %e" % M0)

    cat['Mass'] = cat['Length'] * M0
    if 'Aemit' in cat.columns:
        redshift = 1 / cat['Aemit'] - 1
    else:
        redshift = 1 / cat.attrs['Time'] - 1
    cat['conc'] = transform.HaloConcentration(
        cat['Mass'], CP, redshift).compute(scheduler="single-threaded")
    # proper to comoving
    cat['rvir'] = transform.HaloRadius(cat['Mass'], CP,
                                       redshift).compute() * (1 + redshift)
    cat['vdisp'] = transform.HaloVelocityDispersion(cat['Mass'], CP,
                                                    redshift).compute()

    if 'Aemit' not in cat.columns:
        cat['Aemit'] = cat.attrs['Time'][0]

    mean, std = stat(cat['Aemit'].compute(), cat.comm)
    if cat.comm.rank == 0:
        cat.logger.info("Aemit mean = %g std = %g" % (mean, std))

    mean, std = stat(cat['Mass'].compute(), cat.comm)
    if cat.comm.rank == 0:
        cat.logger.info("mass mean, std = %g, %g" % (mean, std))

    mean, std = stat(cat['conc'].compute(), cat.comm)
    if cat.comm.rank == 0:
        cat.logger.info("conc mean, std = %g, %g" % (mean, std))

    mean, std = stat(cat['rvir'].compute(), cat.comm)
    if cat.comm.rank == 0:
        cat.logger.info("rvir mean, std = %g, %g" % (mean, std))

    mean, std = stat(cat['vdisp'].compute(), cat.comm)
    if cat.comm.rank == 0:
        cat.logger.info("vdisp mean, std = %g, %g" % (mean, std))

    cat.attrs['BoxSize'] = numpy.ones(3) * cat.attrs['BoxSize'][0]
    return cat
Exemple #2
0
    def __init__(self,
                 h=0.67556,
                 T0_cmb=2.7255,
                 Omega0_b=0.0482754208891869,
                 Omega0_cdm=0.26377065934278865,
                 N_ur=None,
                 m_ncdm=[0.06],
                 P_k_max=10.0,
                 P_z_max=100.0,
                 sigma8=0.8225,
                 gauge='synchronous',
                 n_s=0.9667,
                 nonlinear=False):

        # input parameters
        kw_cosmo = locals()
        kw_cosmo.pop('self')
        for kw, val in kw_cosmo.items():
            print(f'{kw:10s}: {val}')

        sigma8 = kw_cosmo.pop('sigma8')
        cosmo = cosmology.Cosmology(**kw_cosmo).match(sigma8=sigma8)

        # --- cosmology calculators
        redshift = 0.0
        delta_crit = 1.686  # critical overdensity for collapse from Press-Schechter
        DH = (
            cosmo.H0 / cosmo.C
        )  # in units of h/Mpc, eq. 4 https://arxiv.org/pdf/astro-ph/9905116.pdf
        Omega0_m = cosmo.Omega0_m

        k_ = np.logspace(-10, 10, 10000)
        Plin_ = cosmology.LinearPower(cosmo, redshift,
                                      transfer='CLASS')  # P(k) in (Mpc/h)^3
        self.Plin = IUS(k_, Plin_(k_), ext=1)
        Tlin_ = cosmology.transfers.CLASS(
            cosmo, redshift)  # T(k), normalized to one at k=0
        tk_ = Tlin_(k_)
        is_good = np.isfinite(tk_)
        self.Tlin = IUS(k_[is_good], tk_[is_good], ext=1)
        self.Dlin = cosmo.scale_independent_growth_factor  # D(z), normalized to one at z=0
        self.f = cosmo.scale_independent_growth_rate  # dlnD/dlna
        self.Dc = cosmo.comoving_distance
        self.h = cosmo.efunc
        self.inv_pi = 2.0 / np.pi

        # alpha_fnl: equation 2 of Mueller et al 2017
        self.alpha_fnl = 3.0 * delta_crit * Omega0_m * (DH**2)
Exemple #3
0
    def init_plin(self):
        h = 0.676
        Omega_nu = 0.00140971
        Omega0_m = 0.31
        Omega0_b = 0.022 / h**2
        Omega0_cdm = Omega0_m - Omega0_b - Omega_nu
        n_s = 0.96
        sigma8 = 0.824

        cosmo = cosmology.Cosmology(h=h,
                                    Omega0_b=Omega0_b,
                                    Omega0_cdm=Omega0_cdm,
                                    n_s=n_s)
        cosmo.match(sigma8=sigma8)
        redshift = 0.57
        self.Plin = LinearPower(cosmo, redshift, transfer='CLASS')
Exemple #4
0
def generate_data(x):
    redshift = 0.0
    r_vals = np.linspace(50, 140, 10)
    extra_input = {'redshift': redshift, 'r_vals': r_vals}

    n_data = x.shape[1]
    y = np.empty((len(r_vals), n_data))
    for i in range(n_data):
        print(i)
        om, s8, ob = x[:, i]
        ocdm = om - ob
        m_ncdm = []  #no massive neutrinos
        cosmo = cosmology.Cosmology(Omega0_b=ob,
                                    Omega0_cdm=ocdm,
                                    m_ncdm=m_ncdm)
        cosmo = cosmo.match(sigma8=s8)
        plin = cosmology.LinearPower(cosmo, redshift, transfer='EisensteinHu')
        cf = cosmology.correlation.CorrelationFunction(plin)
        y[:, i] = cf(r_vals)
    return y, extra_input
Exemple #5
0
def bias_model_lrg(z):
    """ arxiv.org/abs/2001.06018
    
    """
    kw_cosmo = dict(h=0.67556,
                    T0_cmb=2.7255,
                    Omega0_b=0.0482754208891869,
                    Omega0_cdm=0.26377065934278865,
                    N_ur=None,
                    m_ncdm=[0.06],
                    P_k_max=10.0,
                    P_z_max=100.0,
                    sigma8=0.8225,
                    gauge='synchronous',
                    n_s=0.9667,
                    nonlinear=False)
    sigma8 = kw_cosmo.pop('sigma8')
    cosmo = cosmology.Cosmology(**kw_cosmo).match(sigma8=sigma8)
    Dlin = cosmo.scale_independent_growth_factor  # D(z), normalized to one at z=0

    return 1.42 / Dlin(z)
Exemple #6
0
def plot_spectrum_nowiggle_comparison():

	from matplotlib import pyplot
	k,pklin = load_pklin()
	spectrum_nowiggle = SpectrumNoWiggle(k=k)
	cosmo_kwargs = dict(Omega_m=0.31,omega_b=0.022,h=0.676,n_s=0.97)
	spectrum_nowiggle.run_terms(pk=pklin,**cosmo_kwargs)
	tk = spectrum_nowiggle.transfer()
	
	from nbodykit.cosmology.power.transfers import NoWiggleEisensteinHu
	from nbodykit import cosmology
	cosmo_kwargs = dict(Omega_m=0.31,omega_b=0.022,h=0.676,sigma8=0.8,n_s=0.97,N_ur=2.0328,m_ncdm=[0.06])
	cosmo_kwargs['Omega0_b'] = cosmo_kwargs.pop('omega_b')/cosmo_kwargs['h']**2
	Omega0_m = cosmo_kwargs.pop('Omega_m')
	sigma8 = cosmo_kwargs.pop('sigma8')
	cosmo = cosmology.Cosmology(**cosmo_kwargs).match(Omega0_m=Omega0_m).match(sigma8=sigma8)
	eh = NoWiggleEisensteinHu(cosmo,redshift=0.)(k)
	
	pyplot.loglog(k,pklin,label='$P_{\\rm lin}$')
	pyplot.loglog(k,tk,label='$P_{\\rm nowiggle}$')
	pyplot.loglog(k,eh,label='nbodykit')
	pyplot.legend()
	pyplot.show()
Exemple #7
0
grid_mesh = 1024
Boxsize = cata_6411.attrs['BoxSize'] / 1000.
print(r"Nmesh = {:.0f}, a_sqrt = {:.0f}, BoxSize = {:.0f}".format(
    grid_mesh, a_sqrt, Boxsize))

mesh_6411 = cata_6411.to_mesh(Nmesh=grid_mesh,
                              BoxSize=Boxsize,
                              resampler='cic')
mesh_6411 = mesh_6411.compute()
print(mesh_6411.shape)

# xi_6411 = FFTCorr(mesh_6411, mode='1d')

redshift = cata_6411.attrs['Redshift']
cosmo = cosmology.Cosmology(
    h=cata_6411.attrs['HubbleParam'],
    P_k_max=200).match(Omega0_m=cata_6411.attrs['Omega0'])
pk_cosmo = cosmology.LinearPower(cosmo, redshift, transfer='EisensteinHu')


def VectorProjection(vector, direction):
    r"""
    Vector components of given vectors in a given direction.

    .. math::

        \mathbf{v}_\mathbf{d} &= (\mathbf{v} \cdot \hat{\mathbf{d}}) \hat{\mathbf{d}} \\
        \hat{\mathbf{d}} &= \frac{\mathbf{d}}{\|\mathbf{d}\|}

    Parameters
    ----------
Exemple #8
0
cata_fa = BigFileCatalog('/home/yuyu22/testfast/B2T10/snapshot/fastpm_1.0000/',dataset='1/',header='Header/')
cata_fa.attrs

grid_mesh = 1024

print("Nmesh = ", grid_mesh)
Boxsize = 500
mesh_fa = cata_fa.to_mesh(Nmesh=grid_mesh, BoxSize=Boxsize, resampler='cic')
mesh_fa = mesh_fa.compute()
print(mesh_fa.shape)

# xi_fa = FFTCorr(mesh_fa, mode='1d')

redshift = 0.0;
cosmo = cosmology.Cosmology(h=0.6898, P_k_max=200).match(Omega0_m=0.2905)
pk_cosmo = cosmology.LinearPower(cosmo, redshift, transfer='EisensteinHu')

def VectorProjection(vector, direction):
    r"""
    Vector components of given vectors in a given direction.

    .. math::

        \mathbf{v}_\mathbf{d} &= (\mathbf{v} \cdot \hat{\mathbf{d}}) \hat{\mathbf{d}} \\
        \hat{\mathbf{d}} &= \frac{\mathbf{d}}{\|\mathbf{d}\|}

    Parameters
    ----------
    vector : array_like, (..., D)
        array of vectors to be projected