def Observables(cat, observable='plk', rsd=False, Nmesh=256, dk=0.01, kmin=0.01, krange=None): 
    ''' Given galaxy/halo catalog, measure specified observables 
    (e.g. powerspectrum multipoles). 
    '''
    if observable == 'plk': # powerspectrum multipole 
        # things are hardcoded below **for now**
        if rsd: str_pos = 'RSDPosition'
        else: str_pos = 'Position'
        mesh = cat.to_mesh(window='tsc', Nmesh=Nmesh, compensated=True, position=str_pos)
        r = NBlab.FFTPower(mesh, mode='2d', dk=dk, kmin=kmin, Nmu=5, los=[0,0,1], poles=[0,2,4])
        poles = r.poles
        if krange is None: 
            klim = np.ones(len(poles['k'])).astype('bool') 
        else: 
            klim = (poles['k'] > krange[0]) & (poles['k'] < krange[1])

        plk = {'k': poles['k'][klim]} 
        for ell in [0, 2, 4]:
            P = (poles['power_%d' %ell].real)[klim]
            if ell == 0: 
                P = P - poles.attrs['shotnoise'] # subtract shotnoise from monopole 
            plk['p%dk' %ell] = P 
        plk['shotnoise'] = poles.attrs['shotnoise'] # save shot noise term
        return plk  
    else: 
        raise NotImplementedError
# Set up dict to store power spectra measured from grids
Pk_meas = {}
dk = 2 * np.pi / Lbox
kmin = 0.5 * dk

# Loop over 2 random seeds
for s in seeds:
    print_status(comm, start_time,
                 'Making Gaussian realization with seed %d' % s)

    # Make mesh with Gaussian realization of linear power spectrum
    mesh = nbk.LinearMesh(Plin, Nmesh=Nmesh, BoxSize=Lbox, seed=s)

    # Measure power spectrum from mesh and add to dict
    r = nbk.FFTPower(mesh, mode='1d', dk=dk, kmin=kmin)
    Pk = r.power
    Pk_meas[s] = Pk

    # Save mesh to disk
    filename = out_file_prefix + str(s) + out_file_suffix
    mesh.save(filename, dataset='Field', mode='real')
    print_status(comm, start_time, 'Wrote %s' % filename)

# Plot input and measured power spectra
plot_filename = '%spk_comparison.pdf' % os.environ['BSKIT_GRID_DIR']
if comm.rank == 0:
    k_for_plot = np.logspace(-2, 1, 100)
    plt.loglog(k_for_plot, Plin(k_for_plot), '-', label='Input power spectrum')
    for s in seeds:
        plt.loglog(Pk_meas[s]['k'],
Exemple #3
0
def QPMspectra(rsd=False):
    ''' calculate the powerspectrum and bispectrum of the QPM 
    catalog.

    :param rsd: (default: False)
        if True calculate in redshift space. Otherwise, real-space 
    '''
    str_rsd = ''
    if rsd: str_rsd = '.rsd'
    f_halo = ''.join([dir_dat, 'halo_ascii.dat'])
    f_hdf5 = ''.join([dir_dat, 'halo.mlim1e13.Lbox1050.hdf5'])
    f_pell = ''.join([
        dir_dat, 'pySpec.Plk.halo.mlim1e13.Lbox1050', '.Ngrid360', str_rsd,
        '.dat'
    ])
    f_pnkt = ''.join([
        dir_dat, 'pySpec.Plk.halo.mlim1e13.Lbox1050', '.Ngrid360', '.nbodykit',
        str_rsd, '.dat'
    ])
    f_b123 = ''.join([
        dir_dat, 'pySpec.B123.halo.mlim1e13.Lbox1050', '.Ngrid360', '.Nmax40',
        '.Ncut3', '.step3', '.pyfftw', str_rsd, '.dat'
    ])

    Lbox = 1050.
    kf = 2. * np.pi / Lbox

    # 1. read in ascii file
    # 2. impose 10^13 halo mass limit
    # 3. calculate RSD positions
    # 4. write to hdf5 file
    if not os.path.isfile(f_hdf5):
        mh, x, y, z, vx, vy, vz = np.loadtxt(f_halo,
                                             unpack=True,
                                             skiprows=1,
                                             usecols=[0, 1, 2, 3, 4, 5, 6])
        xyz = np.zeros((len(x), 3))
        xyz[:, 0] = x
        xyz[:, 1] = y
        xyz[:, 2] = z

        vxyz = np.zeros((len(x), 3))
        vxyz[:, 0] = vx
        vxyz[:, 1] = vy
        vxyz[:, 2] = vz

        # RSD along the z axis
        xyz_s = pySpec.applyRSD(xyz.T,
                                vxyz.T,
                                0.55,
                                h=0.7,
                                omega0_m=0.340563,
                                LOS='z',
                                Lbox=Lbox)

        mlim = (mh > 1e13)

        mh = mh[mlim]
        xyz = xyz[mlim, :]
        vxyz = vxyz[mlim, :]
        xyz_s = xyz_s.T[mlim, :]

        f = h5py.File(f_hdf5, 'w')
        f.create_dataset('xyz', data=xyz)
        f.create_dataset('vxyz', data=vxyz)
        f.create_dataset('xyz_s', data=xyz_s)
        f.create_dataset('mhalo', data=mh)
        f.close()
    else:
        f = h5py.File(f_hdf5, 'r')
        xyz = f['xyz'].value
        xyz_s = f['xyz_s'].value
        vxyz = f['vxyz'].value
        mh = f['mhalo'].value

    Nhalo = xyz.shape[0]
    print('# halos = %i in %.1f box' % (Nhalo, Lbox))
    nhalo = float(Nhalo) / Lbox**3
    print('number density = %f' % nhalo)
    print('1/nbar = %f' % (1. / nhalo))
    # calculate powerspectrum
    if not os.path.isfile(f_pell):
        # calculate powerspectrum monopole
        if not rsd:
            spec = pySpec.Pk_periodic(xyz.T,
                                      Lbox=Lbox,
                                      Ngrid=360,
                                      silent=False)
        else:
            spec = pySpec.Pk_periodic(xyz_s.T,
                                      Lbox=Lbox,
                                      Ngrid=360,
                                      silent=False)
        k = spec['k']
        p0k = spec['p0k']
        cnts = spec['counts']
        # save to file
        hdr = (
            'pyspectrum P_l=0(k) calculation. Lbox=%.1f, k_f=%.5e, SN=%.5e' %
            (Lbox, kf, 1. / nhalo))
        np.savetxt(f_pell,
                   np.array([k, p0k, cnts]).T,
                   fmt='%.5e %.5e %.5e',
                   delimiter='\t',
                   header=hdr)
    else:
        k, p0k, cnts = np.loadtxt(f_pell,
                                  skiprows=1,
                                  unpack=True,
                                  usecols=[0, 1, 2])

    # calculate P(k) using nbodykit for santiy check
    if not os.path.isfile(f_pnkt):
        # get cosmology from header
        Omega_m = 0.3175
        Omega_b = 0.049  # fixed baryon
        h = 0.6711
        cosmo = NBlab.cosmology.Planck15.clone(Omega_cdm=Omega_m - Omega_b,
                                               h=h,
                                               Omega_b=Omega_b)

        halo_data = {}
        if not rsd: halo_data['Position'] = xyz
        else: halo_data['Position'] = xyz_s
        halo_data['Velocity'] = vxyz
        halo_data['Mass'] = mh
        print("putting it into array catalog")
        halos = NBlab.ArrayCatalog(halo_data,
                                   BoxSize=np.array([Lbox, Lbox, Lbox]))
        print("putting it into halo catalog")
        halos = NBlab.HaloCatalog(halos, cosmo=cosmo, redshift=0., mdef='vir')
        print("putting it into mesh")
        mesh = halos.to_mesh(window='tsc',
                             Nmesh=360,
                             compensated=True,
                             position='Position')
        print("calculating powerspectrum")
        r = NBlab.FFTPower(mesh, mode='1d', dk=kf, kmin=kf, poles=[0, 2, 4])
        poles = r.poles
        plk = {'k': poles['k']}
        for ell in [0, 2, 4]:
            P = (poles['power_%d' % ell].real)
            if ell == 0:
                P = P - poles.attrs[
                    'shotnoise']  # subtract shotnoise from monopole
            plk['p%dk' % ell] = P
        plk['shotnoise'] = poles.attrs['shotnoise']  # save shot noise term

        # header
        hdr = 'pyspectrum P_l(k) calculation. k_f = 2pi/%.1f; P_shotnoise %f' % (
            Lbox, plk['shotnoise'])
        # write to file
        np.savetxt(f_pnkt,
                   np.array([plk['k'], plk['p0k'], plk['p2k'], plk['p4k']]).T,
                   header=hdr)
    else:
        _k, _p0k, _p2k, _p4k = np.loadtxt(f_pnkt,
                                          skiprows=1,
                                          unpack=True,
                                          usecols=[0, 1, 2, 3])
        plk = {}
        plk['k'] = _k
        plk['p0k'] = _p0k
        plk['p2k'] = _p2k
        plk['p4k'] = _p4k

    # calculate bispectrum
    if not os.path.isfile(f_b123):
        # calculate bispectrum
        if not rsd:
            bispec = pySpec.Bk_periodic(xyz.T,
                                        Lbox=Lbox,
                                        Ngrid=360,
                                        Nmax=40,
                                        Ncut=3,
                                        step=3,
                                        fft='pyfftw',
                                        nthreads=1,
                                        silent=False)
        else:
            bispec = pySpec.Bk_periodic(xyz_s.T,
                                        Lbox=Lbox,
                                        Ngrid=360,
                                        Nmax=40,
                                        Ncut=3,
                                        step=3,
                                        fft='pyfftw',
                                        nthreads=1,
                                        silent=False)

        i_k = bispec['i_k1']
        j_k = bispec['i_k2']
        l_k = bispec['i_k3']
        p0k1 = bispec['p0k1']
        p0k2 = bispec['p0k2']
        p0k3 = bispec['p0k3']
        b123 = bispec['b123']
        b123_sn = bispec['b123_sn']
        q123 = bispec['q123']
        counts = bispec['counts']
        # save to file
        hdr = 'pyspectrum bispectrum calculation test. k_f = 2pi/%.1f' % Lbox
        np.savetxt(f_b123,
                   np.array([
                       i_k, j_k, l_k, p0k1, p0k2, p0k3, b123, q123, counts,
                       b123_sn
                   ]).T,
                   fmt='%i %i %i %.5e %.5e %.5e %.5e %.5e %.5e %.5e',
                   delimiter='\t',
                   header=hdr)
    else:
        i_k, j_k, l_k, p0k1, p0k2, p0k3, b123, q123, counts, b123_sn = np.loadtxt(
            f_b123, skiprows=1, unpack=True, usecols=range(10))

    # plot powerspecrtrum shape triangle plot
    fig = plt.figure(figsize=(5, 5))
    sub = fig.add_subplot(111)
    sub.plot(k, p0k, c='k', lw=1, label='pySpectrum')
    sub.plot(plk['k'], plk['p0k'], c='C1', lw=1, label='nbodykit')
    sub.plot(i_k * kf, p0k1, c='k', lw=1, ls='--', label='bispectrum code')
    sub.legend(loc='lower left', fontsize=20)
    sub.set_ylabel('$P_0(k)$', fontsize=25)
    #sub.set_ylim([1e2, 3e4])
    sub.set_yscale('log')
    sub.set_xlabel('$k$', fontsize=25)
    sub.set_xlim([3e-3, 1.])
    sub.set_xscale('log')
    fig.savefig(''.join([dir_dat, 'qpm_p0k', str_rsd, '.png']),
                bbox_inches='tight')

    # plot bispectrum shape triangle plot
    nbin = 31
    x_bins = np.linspace(0., 1., nbin + 1)
    y_bins = np.linspace(0.5, 1., (nbin // 2) + 1)

    fig = plt.figure(figsize=(10, 5))
    sub = fig.add_subplot(111)
    Bgrid = Plots._BorQgrid(
        l_k.astype(float) / i_k.astype(float),
        j_k.astype(float) / i_k.astype(float), q123, counts, x_bins, y_bins)
    bplot = plt.pcolormesh(x_bins,
                           y_bins,
                           Bgrid.T,
                           vmin=0,
                           vmax=1,
                           cmap='RdBu')
    cbar = plt.colorbar(bplot, orientation='vertical')
    sub.set_title(r'$Q(k_1, k_2, k_3)$ QPM halo catalog', fontsize=25)
    sub.set_xlabel('$k_3/k_1$', fontsize=25)
    sub.set_ylabel('$k_2/k_1$', fontsize=25)
    fig.savefig(''.join([dir_dat, 'qpm_Q123_shape', str_rsd, '.png']),
                bbox_inches='tight')

    fig = plt.figure(figsize=(10, 5))
    sub = fig.add_subplot(111)
    Bgrid = Plots._BorQgrid(
        l_k.astype(float) / i_k.astype(float),
        j_k.astype(float) / i_k.astype(float), b123, counts, x_bins, y_bins)
    bplot = plt.pcolormesh(x_bins,
                           y_bins,
                           Bgrid.T,
                           norm=LogNorm(vmin=1e6, vmax=1e8),
                           cmap='RdBu')
    cbar = plt.colorbar(bplot, orientation='vertical')
    sub.set_title(r'$B(k_1, k_2, k_3)$ QPM halo catalog', fontsize=25)
    sub.set_xlabel('$k_3/k_1$', fontsize=25)
    sub.set_ylabel('$k_2/k_1$', fontsize=25)
    fig.savefig(''.join([dir_dat, 'qpm_B123_shape', str_rsd, '.png']),
                bbox_inches='tight')

    # plot bispectrum amplitude
    fig = plt.figure(figsize=(10, 5))
    sub = fig.add_subplot(111)
    sub.scatter(range(len(b123)), q123, c='k', s=1)
    sub.set_xlabel(r'$k_1 > k_2 > k_3$ triangle index', fontsize=25)
    sub.set_xlim([0, len(b123)])
    sub.set_ylabel(r'$Q(k_1, k_2, k_3)$', fontsize=25)
    sub.set_ylim([0., 1.])
    fig.savefig(''.join([dir_dat, 'qpm_Q123', str_rsd, '.png']),
                bbox_inches='tight')

    # plot bispectrum amplitude
    fig = plt.figure(figsize=(10, 5))
    sub = fig.add_subplot(111)
    sub.scatter(range(len(b123)), b123, c='k', s=1)
    sub.set_xlabel(r'$k_1 > k_2 > k_3$ triangle index', fontsize=25)
    sub.set_xlim([0, len(b123)])
    sub.set_ylabel(r'$B(k_1, k_2, k_3)$', fontsize=25)
    sub.set_yscale('log')
    fig.savefig(''.join([dir_dat, 'qpm_B123', str_rsd, '.png']),
                bbox_inches='tight')
    return None
Exemple #4
0
def AEMspectra(rsd=False):
    ''' calculate the powerspectrum and bispectrum of the Aemulus simulation box 
    '''
    str_rsd = ''
    if rsd: str_rsd = '.rsd'
    f_halo = ''.join(
        [UT.dat_dir(), 'aemulus/aemulus_test002_halos.mlim1e13.hdf5'])
    f_hdf5 = ''.join(
        [UT.dat_dir(), 'aemulus/aemulus_test002_halos.mlim1e13.hdf5'])
    f_pell = ''.join([
        UT.dat_dir(), 'aemulus/pySpec.Plk.halo.mlim1e13.Ngrid360', str_rsd,
        '.dat'
    ])
    f_pnkt = ''.join([
        UT.dat_dir(), 'aemulus/pySpec.Plk.halo.mlim1e13.Ngrid360.nbodykit',
        str_rsd, '.dat'
    ])
    f_b123 = ''.join([
        UT.dat_dir(),
        'aemulus/pySpec.B123.halo.mlim1e13.Ngrid360.Nmax40.Ncut3.step3.pyfftw',
        str_rsd, '.dat'
    ])

    Lbox = 1050.
    kf = 2. * np.pi / Lbox

    if not os.path.isfile(f_hdf5):
        f = h5py.File(f_halo, 'r')
        xyz = f['xyz'].value
        vxyz = f['vxyz'].value
        mh = f['mhalo'].value
        xyz_s = pySpec.applyRSD(xyz.T,
                                vxyz.T,
                                0.55,
                                h=0.7,
                                omega0_m=0.340563,
                                LOS='z',
                                Lbox=Lbox)
        xyz_s = xyz_s.T

        f = h5py.File(f_hdf5, 'w')
        f.create_dataset('xyz', data=xyz)
        f.create_dataset('vxyz', data=vxyz)
        f.create_dataset('xyz_s', data=xyz_s)
        f.create_dataset('mhalo', data=mh)
        f.close()
    else:
        f = h5py.File(f_hdf5, 'r')
        xyz = f['xyz'].value
        vxyz = f['vxyz'].value
        xyz_s = f['xyz_s'].value
        mh = f['mhalo'].value
        f.close()

    Nhalo = xyz.shape[0]
    print('# halos = %i' % Nhalo)
    nhalo = float(Nhalo) / Lbox**3
    print('number density = %f' % nhalo)
    print('1/nbar = %f' % (1. / nhalo))

    # calculate powerspectrum
    if not os.path.isfile(f_pell):
        # calculate FFTs
        if not rsd:
            delta = pySpec.FFTperiodic(xyz.T,
                                       fft='fortran',
                                       Lbox=Lbox,
                                       Ngrid=360,
                                       silent=False)
        else:
            delta = pySpec.FFTperiodic(xyz_s.T,
                                       fft='fortran',
                                       Lbox=Lbox,
                                       Ngrid=360,
                                       silent=False)
        delta_fft = pySpec.reflect_delta(delta, Ngrid=360)

        # calculate powerspectrum monopole
        k, p0k, cnts = pySpec.Pk_periodic(delta_fft)
        k = k * kf
        p0k = p0k / kf**3 - 1. / nhalo

        # save to file
        hdr = 'pyspectrum P_l=0(k) calculation. k_f = 2pi/1050.'
        np.savetxt(f_pell,
                   np.array([k, p0k, cnts]).T,
                   fmt='%.5e %.5e %.5e',
                   delimiter='\t',
                   header=hdr)
    else:
        k, p0k, cnts = np.loadtxt(f_pell,
                                  skiprows=1,
                                  unpack=True,
                                  usecols=[0, 1, 2])

    # calculate P(k) using nbodykit for santiy check
    if not os.path.isfile(f_pnkt):
        # get cosmology from header
        Omega_m = 0.3175
        Omega_b = 0.049  # fixed baryon
        h = 0.6711
        cosmo = NBlab.cosmology.Planck15.clone(Omega_cdm=Omega_m - Omega_b,
                                               h=h,
                                               Omega_b=Omega_b)

        halo_data = {}
        if not rsd: halo_data['Position'] = xyz
        else: halo_data['Position'] = xyz_s
        halo_data['Velocity'] = vxyz
        halo_data['Mass'] = mh
        print("putting it into array catalog")
        halos = NBlab.ArrayCatalog(halo_data,
                                   BoxSize=np.array([Lbox, Lbox, Lbox]))
        print("putting it into halo catalog")
        halos = NBlab.HaloCatalog(halos, cosmo=cosmo, redshift=0., mdef='vir')
        print("putting it into mesh")
        mesh = halos.to_mesh(window='tsc',
                             Nmesh=360,
                             compensated=True,
                             position='Position')
        print("calculating powerspectrum")
        r = NBlab.FFTPower(mesh, mode='1d', dk=kf, kmin=kf, poles=[0, 2, 4])
        poles = r.poles
        plk = {'k': poles['k']}
        for ell in [0, 2, 4]:
            P = (poles['power_%d' % ell].real)
            if ell == 0:
                P = P - poles.attrs[
                    'shotnoise']  # subtract shotnoise from monopole
            plk['p%dk' % ell] = P
        plk['shotnoise'] = poles.attrs['shotnoise']  # save shot noise term

        # header
        hdr = 'pyspectrum P_l(k) calculation. k_f = 2pi/1050; P_shotnoise ' + str(
            plk['shotnoise'])
        # write to file
        np.savetxt(f_pnkt,
                   np.array([plk['k'], plk['p0k'], plk['p2k'], plk['p4k']]).T,
                   header=hdr)
    else:
        _k, _p0k, _p2k, _p4k = np.loadtxt(f_pnkt,
                                          skiprows=1,
                                          unpack=True,
                                          usecols=[0, 1, 2, 3])
        plk = {}
        plk['k'] = _k
        plk['p0k'] = _p0k
        plk['p2k'] = _p2k
        plk['p4k'] = _p4k

    # calculate bispectrum
    if not os.path.isfile(f_b123):
        if not rsd:
            bispec = pySpec.Bk_periodic(xyz.T,
                                        Lbox=Lbox,
                                        Ngrid=360,
                                        Nmax=40,
                                        Ncut=3,
                                        step=3,
                                        fft='pyfftw',
                                        nthreads=1,
                                        silent=False)
        else:
            bispec = pySpec.Bk_periodic(xyz_s.T,
                                        Lbox=Lbox,
                                        Ngrid=360,
                                        Nmax=40,
                                        Ncut=3,
                                        step=3,
                                        fft='pyfftw',
                                        nthreads=1,
                                        silent=False)

        i_k = bispec['i_k1']
        j_k = bispec['i_k2']
        l_k = bispec['i_k3']
        p0k1 = bispec['p0k1']
        p0k2 = bispec['p0k2']
        p0k3 = bispec['p0k3']
        b123 = bispec['b123']
        b123_sn = bispec['b123_sn']
        q123 = bispec['q123']
        counts = bispec['counts']
        # save to file
        hdr = 'pyspectrum bispectrum calculation test. k_f = 2pi/%.1f' % Lbox
        np.savetxt(f_b123,
                   np.array([
                       i_k, j_k, l_k, p0k1, p0k2, p0k3, b123, q123, counts,
                       b123_sn
                   ]).T,
                   fmt='%i %i %i %.5e %.5e %.5e %.5e %.5e %.5e %.5e',
                   delimiter='\t',
                   header=hdr)
    else:
        i_k, j_k, l_k, p0k1, p0k2, p0k3, b123, q123, counts, b123_sn = np.loadtxt(
            f_b123, skiprows=1, unpack=True, usecols=range(10))

    # plot powerspecrtrum shape triangle plot
    fig = plt.figure(figsize=(5, 5))
    sub = fig.add_subplot(111)
    sub.plot(k, p0k, c='k', lw=1, label='pySpectrum')
    sub.plot(plk['k'], plk['p0k'], c='C1', lw=1, label='nbodykit')
    iksort = np.argsort(i_k)
    sub.plot(i_k[iksort] * kf,
             p0k1[iksort],
             c='k',
             lw=1,
             ls='--',
             label='bispectrum code')
    sub.legend(loc='lower left', fontsize=20)
    sub.set_ylabel('$P_0(k)$', fontsize=25)
    #sub.set_ylim([1e2, 3e4])
    sub.set_yscale('log')
    sub.set_xlabel('$k$', fontsize=25)
    sub.set_xlim([3e-3, 1.])
    sub.set_xscale('log')
    fig.savefig(''.join([UT.dat_dir(), 'aemulus/aemulus_p0k', str_rsd,
                         '.png']),
                bbox_inches='tight')

    # plot bispectrum shape triangle plot
    nbin = 31
    x_bins = np.linspace(0., 1., nbin + 1)
    y_bins = np.linspace(0.5, 1., (nbin // 2) + 1)

    fig = plt.figure(figsize=(10, 5))
    sub = fig.add_subplot(111)
    Bgrid = Plots._BorQgrid(
        l_k.astype(float) / i_k.astype(float),
        j_k.astype(float) / i_k.astype(float), q123, counts, x_bins, y_bins)
    bplot = plt.pcolormesh(x_bins,
                           y_bins,
                           Bgrid.T,
                           vmin=0,
                           vmax=1,
                           cmap='RdBu')
    cbar = plt.colorbar(bplot, orientation='vertical')
    sub.set_title(r'$Q(k_1, k_2, k_3)$ QPM halo catalog', fontsize=25)
    sub.set_xlabel('$k_3/k_1$', fontsize=25)
    sub.set_ylabel('$k_2/k_1$', fontsize=25)
    fig.savefig(''.join(
        [UT.dat_dir(), 'aemulus/aemulus_Q123_shape', str_rsd, '.png']),
                bbox_inches='tight')

    fig = plt.figure(figsize=(10, 5))
    sub = fig.add_subplot(111)
    Bgrid = Plots._BorQgrid(
        l_k.astype(float) / i_k.astype(float),
        j_k.astype(float) / i_k.astype(float), b123, counts, x_bins, y_bins)
    bplot = plt.pcolormesh(x_bins,
                           y_bins,
                           Bgrid.T,
                           norm=LogNorm(vmin=1e6, vmax=1e8),
                           cmap='RdBu')
    cbar = plt.colorbar(bplot, orientation='vertical')
    sub.set_title(r'$B(k_1, k_2, k_3)$ QPM halo catalog', fontsize=25)
    sub.set_xlabel('$k_3/k_1$', fontsize=25)
    sub.set_ylabel('$k_2/k_1$', fontsize=25)
    fig.savefig(''.join(
        [UT.dat_dir(), 'aemulus/aemulus_B123_shape', str_rsd, '.png']),
                bbox_inches='tight')

    # plot bispectrum amplitude
    fig = plt.figure(figsize=(10, 5))
    sub = fig.add_subplot(111)
    sub.scatter(range(len(b123)), q123, c='k', s=1)
    sub.set_xlabel(r'$k_1 > k_2 > k_3$ triangle index', fontsize=25)
    sub.set_xlim([0, len(b123)])
    sub.set_ylabel(r'$Q(k_1, k_2, k_3)$', fontsize=25)
    sub.set_ylim([0., 1.])
    fig.savefig(''.join(
        [UT.dat_dir(), 'aemulus/aemulus_Q123', str_rsd, '.png']),
                bbox_inches='tight')

    # plot bispectrum amplitude
    fig = plt.figure(figsize=(10, 5))
    sub = fig.add_subplot(111)
    sub.scatter(range(len(b123)), b123, c='k', s=1)
    sub.set_xlabel(r'$k_1 > k_2 > k_3$ triangle index', fontsize=25)
    sub.set_xlim([0, len(b123)])
    sub.set_ylabel(r'$B(k_1, k_2, k_3)$', fontsize=25)
    sub.set_yscale('log')
    fig.savefig(''.join(
        [UT.dat_dir(), 'aemulus/aemulus_B123', str_rsd, '.png']),
                bbox_inches='tight')
    return None
Exemple #5
0
# P(k,mu) from nbodykit
import nbodykit.lab as NBlab
objs = {}
objs['Position'] = xyz.T
objs['Velocity'] = vxyz.T
objs['RSDPosition'] = xyz_s

cat = NBlab.ArrayCatalog(objs, BoxSize=Lbox)
mesh = cat.to_mesh(window='tsc',
                   Nmesh=360,
                   BoxSize=Lbox,
                   compensated=True,
                   position='RSDPosition')
r = NBlab.FFTPower(mesh,
                   mode='2d',
                   dk=kf,
                   kmin=0.5 * kf,
                   Nmu=10,
                   los=[0, 0, 1])
print(r.power)

fig = plt.figure(figsize=(10, 5))
sub = fig.add_subplot(121)
cm = sub.pcolormesh(pkmu_og, norm=LogNorm(vmin=1e3, vmax=1e5))
sub.set_yscale('log')
sub.set_ylim(1, 180)
sub.set_title('original')
sub = fig.add_subplot(122)
cm = sub.pcolormesh(pkout['p_kmu'], norm=LogNorm(vmin=1e3, vmax=1e5))
sub.set_yscale('log')
sub.set_ylim(1, 180)
sub.set_title('pySpectrum')
Exemple #6
0
def fastPM(z, str_flag='', mh_lim=15., Lbox=205., Nmax=40, Ncut=3, step=3):
    ''' calculate the powerspectrum and bispectrum of the fastPM catalog.
    '''
    dir_fpm = os.path.join(UT.dat_dir(), 'fastpm')
    f_halo = ('halocat_FastPM_40step_N250_IC500_B2_z%.2f%s.txt' %
              (z, str_flag))
    f_mlim = ('halocat_FastPM_40step_N250_IC500_B2_z%.2f%s.mlim%.fe10' %
              (z, str_flag, mh_lim))
    f_hdf5 = ('%s/%s.hdf5' % (dir_fpm, f_mlim))
    f_pell = ('%s/pySpec.Plk.%s.Lbox%.f.Ngrid360.dat' %
              (dir_fpm, f_mlim, Lbox))
    f_pnkt = ('%s/pySpec.Plk.%s.Lbox%.f.Ngrid360.nbodykit.dat' %
              (dir_fpm, f_mlim, Lbox))
    f_b123 = ('%s/pySpec.Bk.%s.Lbox%.f.Ngrid360.step%i.Ncut%i.Nmax%i.dat' %
              (dir_fpm, f_mlim, Lbox, step, Ncut, Nmax))

    kf = 2. * np.pi / Lbox

    if not os.path.isfile(f_hdf5):
        # read in halo catalog
        dat_halo = np.loadtxt(os.path.join(dir_fpm, f_halo),
                              unpack=True,
                              usecols=[0, 1, 2, 3, 7, 8, 9])
        mh = dat_halo[0]
        Nhalo = len(mh)
        print('%i halos in %.f Mpc/h box' % (len(mh), Lbox))
        print('%f < M_h/10^10Msun < %f' % (mh.min(), mh.max()))
        xyz = np.zeros((Nhalo, 3))
        xyz[:, 0] = dat_halo[1]
        xyz[:, 1] = dat_halo[2]
        xyz[:, 2] = dat_halo[3]
        print('%f < x < %f' % (xyz[:, 0].min(), xyz[:, 0].max()))
        print('%f < y < %f' % (xyz[:, 1].min(), xyz[:, 1].max()))
        print('%f < z < %f' % (xyz[:, 2].min(), xyz[:, 2].max()))

        vxyz = np.zeros((Nhalo, 3))
        vxyz[:, 0] = dat_halo[4]
        vxyz[:, 1] = dat_halo[5]
        vxyz[:, 2] = dat_halo[6]

        mlim = (mh > 15.)
        Nhalo = np.sum(mlim)
        print('%i halos in %.f Mpc/h box with Mh > %f' % (Nhalo, Lbox, mh_lim))

        mh = mh[mlim]
        xyz = xyz[mlim, :]
        vxyz = vxyz[mlim, :]

        f = h5py.File(f_hdf5, 'w')
        f.create_dataset('xyz', data=xyz)
        f.create_dataset('vxyz', data=vxyz)
        f.create_dataset('mhalo', data=mh)
        f.close()
    else:
        f = h5py.File(f_hdf5, 'r')
        xyz = f['xyz'].value
        vxyz = f['vxyz'].value
        mh = f['mhalo'].value
        Nhalo = xyz.shape[0]
        print('%i halos in %.f Mpc/h box with Mh > %f' %
              (len(mh), Lbox, mh_lim))

    nhalo = float(Nhalo) / Lbox**3
    print('number density = %f' % nhalo)
    print('1/nbar = %f' % (1. / nhalo))

    # calculate powerspectrum
    if not os.path.isfile(f_pell):
        delta = pySpec.FFTperiodic(xyz.T,
                                   fft='fortran',
                                   Lbox=Lbox,
                                   Ngrid=360,
                                   silent=False)
        delta_fft = pySpec.reflect_delta(delta, Ngrid=360)

        # calculate powerspectrum monopole
        k, p0k, cnts = pySpec.Pk_periodic(delta_fft)
        k *= kf
        p0k = p0k / (kf**3) - 1. / nhalo
        # save to file
        hdr = ('pySpectrum P_l=0(k). Nhalo=%i, Lbox=%.f, k_f=%.5e, SN=%.5e' %
               (Nhalo, Lbox, kf, 1. / nhalo))
        hdr += '\n k, p0k, counts'
        np.savetxt(f_pell,
                   np.array([k, p0k, cnts]).T,
                   fmt='%.5e %.5e %.5e',
                   delimiter='\t',
                   header=hdr)
    else:
        k, p0k, cnts = np.loadtxt(f_pell,
                                  skiprows=1,
                                  unpack=True,
                                  usecols=[0, 1, 2])

    # calculate P(k) using nbodykit for santiy check
    if not os.path.isfile(f_pnkt):
        cosmo = NBlab.cosmology.Planck15

        halo_data = {}
        halo_data['Position'] = xyz
        halo_data['Velocity'] = vxyz
        halo_data['Mass'] = mh
        print("putting it into array catalog")
        halos = NBlab.ArrayCatalog(halo_data,
                                   BoxSize=np.array([Lbox, Lbox, Lbox]))
        print("putting it into halo catalog")
        halos = NBlab.HaloCatalog(halos, cosmo=cosmo, redshift=z, mdef='vir')
        print("putting it into mesh")
        mesh = halos.to_mesh(window='tsc',
                             Nmesh=360,
                             compensated=True,
                             position='Position')
        print("calculating powerspectrum")
        r = NBlab.FFTPower(mesh, mode='1d', dk=kf, kmin=kf, poles=[0, 2, 4])
        poles = r.poles
        plk = {'k': poles['k']}
        for ell in [0, 2, 4]:
            P = (poles['power_%d' % ell].real)
            if ell == 0:
                P = P - poles.attrs[
                    'shotnoise']  # subtract shotnoise from monopole
            plk['p%dk' % ell] = P
        plk['shotnoise'] = poles.attrs['shotnoise']  # save shot noise term

        # header
        hdr = ('pySpectrum P_l(k). Nhalo=%i, Lbox=%.f, k_f=%.5e, SN=%.5e' %
               (Nhalo, Lbox, kf, plk['shotnoise']))
        hdr += '\n k, p0k, p2k, p4k'
        # save to file
        np.savetxt(f_pnkt,
                   np.array([plk['k'], plk['p0k'], plk['p2k'], plk['p4k']]).T,
                   header=hdr)
    else:
        _k, _p0k, _p2k, _p4k = np.loadtxt(f_pnkt,
                                          skiprows=1,
                                          unpack=True,
                                          usecols=[0, 1, 2, 3])
        plk = {}
        plk['k'] = _k
        plk['p0k'] = _p0k
        plk['p2k'] = _p2k
        plk['p4k'] = _p4k

    # calculate bispectrum
    if not os.path.isfile(f_b123):
        # calculate bispectrum
        bispec = pySpec.Bk_periodic(xyz.T,
                                    Lbox=Lbox,
                                    Ngrid=360,
                                    Nmax=40,
                                    Ncut=3,
                                    step=3,
                                    fft='pyfftw',
                                    nthreads=1,
                                    silent=False)

        i_k = bispec['i_k1']
        j_k = bispec['i_k2']
        l_k = bispec['i_k3']
        p0k1 = bispec['p0k1']
        p0k2 = bispec['p0k2']
        p0k3 = bispec['p0k3']
        b123 = bispec['b123']
        b123_sn = bispec['b123_sn']
        q123 = bispec['q123']
        counts = bispec['counts']
        # save to file
        hdr = 'pyspectrum bispectrum calculation test. k_f = 2pi/%.1f' % Lbox
        hdr += '\n i_k1, i_k2, i_k3, p0k1, p0k2, p0k3, bk, qk, counts, bk_shotnoise'
        np.savetxt(f_b123,
                   np.array([
                       i_k, j_k, l_k, p0k1, p0k2, p0k3, b123, q123, counts,
                       b123_sn
                   ]).T,
                   fmt='%i %i %i %.5e %.5e %.5e %.5e %.5e %.5e %.5e',
                   delimiter='\t',
                   header=hdr)
    else:
        i_k, j_k, l_k, p0k1, p0k2, p0k3, b123, q123, counts, b123_sn = np.loadtxt(
            f_b123, skiprows=1, unpack=True, usecols=range(10))

    # plot powerspecrtrum shape triangle plot
    fig = plt.figure(figsize=(5, 5))
    sub = fig.add_subplot(111)
    sub.plot(k, p0k, c='k', lw=1, label='pySpectrum')
    sub.plot(plk['k'], plk['p0k'], c='C1', lw=1, label='nbodykit')
    iksort = np.argsort(i_k)
    sub.plot(i_k[iksort] * kf,
             p0k1[iksort],
             c='k',
             lw=1,
             ls='--',
             label='bispectrum code')
    sub.legend(loc='lower left', fontsize=20)
    sub.set_ylabel('$P_0(k)$', fontsize=25)
    sub.set_ylim([1e0, 1e4])
    sub.set_yscale('log')
    sub.set_xlabel('$k$', fontsize=25)
    sub.set_xlim([1e-2, 10.])
    sub.set_xscale('log')
    fig.savefig(f_pell.replace('.dat', '.png'), bbox_inches='tight')

    # plot bispectrum shape triangle plot
    nbin = 31
    x_bins = np.linspace(0., 1., nbin + 1)
    y_bins = np.linspace(0.5, 1., (nbin // 2) + 1)

    fig = plt.figure(figsize=(10, 5))
    sub = fig.add_subplot(111)
    Bgrid = Plots._BorQgrid(
        l_k.astype(float) / i_k.astype(float),
        j_k.astype(float) / i_k.astype(float), q123, counts, x_bins, y_bins)
    bplot = plt.pcolormesh(x_bins,
                           y_bins,
                           Bgrid.T,
                           vmin=0,
                           vmax=1,
                           cmap='RdBu')
    cbar = plt.colorbar(bplot, orientation='vertical')
    sub.set_title(r'$Q(k_1, k_2, k_3)$ FastPM halo catalog', fontsize=25)
    sub.set_xlabel('$k_3/k_1$', fontsize=25)
    sub.set_ylabel('$k_2/k_1$', fontsize=25)
    fig.savefig(f_b123.replace('.dat', '.Qk_shape.png'), bbox_inches='tight')

    fig = plt.figure(figsize=(10, 5))
    sub = fig.add_subplot(111)
    Bgrid = Plots._BorQgrid(
        l_k.astype(float) / i_k.astype(float),
        j_k.astype(float) / i_k.astype(float), b123, counts, x_bins, y_bins)
    bplot = plt.pcolormesh(x_bins,
                           y_bins,
                           Bgrid.T,
                           norm=LogNorm(vmin=1e6, vmax=1e8),
                           cmap='RdBu')
    cbar = plt.colorbar(bplot, orientation='vertical')
    sub.set_title(r'$B(k_1, k_2, k_3)$ FastPM halo catalog', fontsize=25)
    sub.set_xlabel('$k_3/k_1$', fontsize=25)
    sub.set_ylabel('$k_2/k_1$', fontsize=25)
    fig.savefig(f_b123.replace('.dat', '.Bk_shape.png'), bbox_inches='tight')

    # plot bispectrum amplitude
    fig = plt.figure(figsize=(10, 5))
    sub = fig.add_subplot(111)
    sub.scatter(range(len(b123)), q123, c='k', s=1)
    sub.set_xlabel(r'$k_1 > k_2 > k_3$ triangle index', fontsize=25)
    sub.set_xlim([0, len(b123)])
    sub.set_ylabel(r'$Q(k_1, k_2, k_3)$', fontsize=25)
    sub.set_ylim([0., 1.])
    fig.savefig(f_b123.replace('.dat', '.Qk.png'), bbox_inches='tight')

    fig = plt.figure(figsize=(10, 5))
    sub = fig.add_subplot(111)
    sub.scatter(range(len(b123)), b123, c='k', s=1)
    sub.set_xlabel(r'$k_1 > k_2 > k_3$ triangle index', fontsize=25)
    sub.set_xlim([0, len(b123)])
    sub.set_ylabel(r'$B(k_1, k_2, k_3)$', fontsize=25)
    sub.set_yscale('log')
    fig.savefig(f_b123.replace('.dat', '.Bk.png'), bbox_inches='tight')
    return None
Exemple #7
0
#     cat_f = np.zeros(X.shape[0], dtype=np.dtype([('Position', ('f4',3))]))
#     cat_f['Position'] = X
#     return nb.ArrayCatalog(cat_f)

from time import time
from argparse import ArgumentParser
ap = ArgumentParser(description='Power Spectrum Calculator using Nbodykit')
ap.add_argument('--input', default='3dbox_nmesh1024_L5274.0_bias1.5_seed1')
ap.add_argument('--output',
                default='power_3dbox_nmesh1024_L5274.0_bias1.5_seed1.json')
ap.add_argument('--boxsize', type=float, default=5274)
ap.add_argument('--nmesh', type=int, default=256)
ns = ap.parse_args()
#
t1 = time()
CAT = read_BigFile(ns.input)
print('time to read the file', time() - t1)
OUT = ns.output
BOX = ns.boxsize
NMESH = ns.nmesh

t2 = time()
mesh = CAT.to_mesh(compensated=True,
                   window='cic',
                   position='Position',
                   BoxSize=BOX,
                   Nmesh=NMESH)
rpol = nb.FFTPower(mesh, mode='1d', kmin=0.0, poles=[0, 2, 4])
rpol.save(OUT)
print('finished in {} s'.format(time() - t2))
Exemple #8
0
result = {}
for i in range(nsub_per_side):
    for j in range(nsub_per_side):
        for k in range(nsub_per_side):
            # Convert indices representing subset of each coordinate axis
            # to single index for all Nsub^3 subboxes
            ind = bskit.subbox_multiindex_to_index((i, j, k), nsub_per_side)

            # Fetch mesh corresponding to subbox
            print_status(comm,start_time,'About to measure '+spec_string \
                         +' from subbox %d' % ind)
            sub_mesh = bskit.field_subbox_pm((i, j, k), nsub_per_side, field)

            # Measure subbox auto spectrum, or fetch cross subbox and measure cross spectrum
            if (cross_in_file is None):
                r = nbk.FFTPower(sub_mesh, mode='1d', dk=dk, kmin=kmin)
            else:
                sub_cross_mesh = bskit.field_subbox_pm(
                    (i, j, k), nsub_per_side, cross_field)
                r = nbk.FFTPower(sub_mesh,
                                 second=sub_cross_mesh,
                                 mode='1d',
                                 dk=dk,
                                 kmin=kmin)

            # Add P(k) dict to results dict
            result[ind] = r.power
            print_status(comm, start_time,
                         'Measured ' + spec_string + ' from subbox %d' % ind)

            # Save plain text file with all results so far (so that partial results