def BOSSGalaxies(sample='lowz-south'): ''' Read in BOSS galaxy catalog. Data can be downloaded from https://data.sdss.org/sas/dr12/boss/lss/ Parameters ---------- sample : string Specify the exact BOSS sample. For options see https://data.sdss.org/sas/dr12/boss/lss/ (Default: 'cmass-north') Returns ------- data : nbodykit.lab.FITSCatalog object BOSS galaxy catalog ''' if sample == 'cmass-north': fgal = os.path.join(os.environ('BOSSSBI_DIR'), 'boss', 'galaxy_DR12v5_CMASS_North.fits.gz') elif sample == 'lowz-south': fgal = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'dat', 'galaxy_DR12v5_LOWZ_South.fits.gz') else: raise NotImplementedError data = NBlab.FITSCatalog(fgal) return data
random_path = None output_path = None zlim = None nmesh = None sys_tot = None galaxy_path = comm.bcast(galaxy_path, root=0) random_path = comm.bcast(random_path, root=0) output_path = comm.bcast(output_path, root=0) zlim = comm.bcast(zlim, root=0) nmesh = comm.bcast(nmesh, root=0) sys_tot = comm.bcast(sys_tot, root=0) # data = nb.FITSCatalog(galaxy_path) randoms = nb.FITSCatalog(random_path) if rank == 0: print('data columns = ', data.columns, data.size) print('randoms columns = ', randoms.columns, randoms.size) ZMIN = zlim[0] ZMAX = zlim[1] # slice the data and randoms compmin=0.5 valid = (data['Z'] >= ZMIN) & (data['Z'] <= ZMAX) if 'IMATCH' in data.columns:
from mpi4py import MPI comm = MPI.COMM_WORLD size = comm.Get_size() rank = comm.Get_rank() from argparse import ArgumentParser ap = ArgumentParser(description='Neural Net regression') ap.add_argument('--galaxy_path', default='NONE') ap.add_argument('--output_path', default='NONE') # ap.add_argument('--nmesh', default=256, type=int) ap.add_argument('--zlim', nargs='*', type=float, default=[0.8, 2.2]) # ap.add_argument('--sys_tot', action='store_true') ns = ap.parse_args() # data = nb.FITSCatalog(ns.galaxy_path) print(data.columns) data['Weight'] = data['WEIGHT_FKP'] #data['Weight'] = data['WEIGHT_CP']*data['WEIGHT_NOZ']*data['WEIGHT_SYSTOT']*data['WEIGHT_FKP'] ZMIN = ns.zlim[0] ZMAX = ns.zlim[1] # slice the data and randoms print('before', data.size) valid = (data['Z'] > ZMIN) & (data['Z'] < ZMAX) data = data[valid] print('after', data.size) if rank == 0: print('data columns = ', data.columns, data.size)
rmin = 0.0 rmax = 200.0 #box = 1000 # Mpc/h edges = np.arange(rmin, rmax + 2 * dr, dr) #MOCKNAME = 'UNIT' #LASTNAME = 'REZAIE' #BINNING = 'lin' #ESTIMATOR1 = 'xi2D' #ESTIMATOR2 = 'xil' #version = 1 #ouname1 = f'{ESTIMATOR1}_{BINNING}_{LASTNAME}_{MOCKNAME}_{version}.txt' #ouname2 = f'{ESTIMATOR2}_{BINNING}_{LASTNAME}_{MOCKNAME}_{version}.txt' # read data catalog = nb.FITSCatalog(input_name) for col in ['x', 'y', 'z', 'z_rsd']: if not col in catalog.columns: raise RuntimeError('%s not available' % col) # redshift or real space if action == 'ddrmu': catalog['Position'] = np.column_stack( [catalog['x'], catalog['y'], catalog['z']]) elif action == 'ddsmu': catalog['Position'] = np.column_stack( [catalog['x'], catalog['y'], catalog['z_rsd']]) # run Corrfunc if rank == 0: t0 = time() results = nb.SimulationBox2PCF(mode, catalog,
ap.add_argument('--poles', nargs='*', type=int, default=[0, 2, 4]) ap.add_argument('--real', action='store_true') ns = ap.parse_args() else: ns = None ns = comm.bcast(ns, root=0) if rank == 0: args = ns.__dict__ for (a, b) in zip(args.keys(), args.values()): print('{:6s}{:15s} : {}'.format('', a, b)) ZMIN, ZMAX = ns.zlim data = nb.FITSCatalog(ns.data) randoms = nb.FITSCatalog(ns.randoms) if ns.mask != 'None': mask = nb.FITSCatalog(ns.mask)['bool_index'] data = data[mask] else: mask = None if ns.wsys != 'None': wsys = nb.FITSCatalog(ns.wsys)['wsys'] if mask is None: raise RuntimeError('mask and weight should be used together') data['Weight'] = wsys if ns.real: