def test_not(self): data = numpy.zeros(100, dtype=[('mass', int), ('velocity', int)]) data['mass'] = numpy.random.choice([0, 1, 2], size=100) ans = data['mass'] >= 1 q = Query("not mass < 1") mask = q.get_mask(data) self.assertTrue(numpy.all(ans == mask)) q = Query("not (mass < 1)") mask = q.get_mask(data) self.assertTrue(numpy.all(ans == mask))
def test_compound_or(self): data = numpy.zeros(100, dtype=[('mass', int), ('velocity', int)]) data['mass'] = numpy.random.choice([0, 1, 2], size=100) data['velocity'] = numpy.random.choice([0, 1, 2], size=100) ans = (data['mass'] == 0) | (data['velocity'] != 1) q = Query("mass == 0 or velocity != 1") mask = q.get_mask(data) self.assertTrue(numpy.all(ans == mask)) q = Query("(mass == 0) or (velocity != 1)") mask = q.get_mask(data) self.assertTrue(numpy.all(ans == mask))
def test_compound_and(self): data = numpy.zeros(100, dtype=[('mass', float), ('velocity', float)]) data['mass'] = numpy.random.random(size=100) data['velocity'] = numpy.random.random(size=100) q = Query("mass < 0.5 and velocity > 0.5") sliced = data[q.get_mask(data)] self.assertTrue(numpy.alltrue(sliced['mass'] < 0.5)) self.assertTrue(numpy.alltrue(sliced['velocity'] > 0.5)) q = Query("(mass < 0.5) and (velocity > 0.5)") sliced = data[q.get_mask(data)] self.assertTrue(numpy.alltrue(sliced['mass'] < 0.5)) self.assertTrue(numpy.alltrue(sliced['velocity'] > 0.5))
def test_missing_op(self): data = numpy.zeros(5, dtype=[('mass', 'f8')]) data['mass'][0] = numpy.nan with pytest.raises(SelectionError): q = Query("mass isnot 4)") m = q.get_mask(data)
def test_eval_fail(self): data = numpy.zeros(5, dtype=[('mass', 'f8')]) data['mass'][0] = numpy.nan with pytest.raises(SelectionError): q = Query("mass < missing_func(0.3)") m = q.get_mask(data)
def test_indexing_out_of_range(self): data = numpy.zeros(10, dtype=[('Position', (float, 3))]) data['Position'] = numpy.random.random(size=(10, 3)) with pytest.raises(SelectionError): q = Query("Position[:,4] is nan") m = q.get_mask(data)
def test_indexing_single_dimension(self): data = numpy.zeros(5, dtype=[('mass', 'f8')]) data['mass'][0] = numpy.nan with pytest.raises(SelectionError): q = Query("mass[:,0] is nan") m = q.get_mask(data)
def test_missing_column(self): data = numpy.zeros(5, dtype=[('mass', 'f8')]) data['mass'][0] = numpy.nan with pytest.raises(SelectionError): q = Query("velocity is nan") m = q.get_mask(data)
def test_slice_index_fail(self): data = numpy.zeros(100, dtype=[('Position', (float, 3))]) data['Position'] = numpy.random.random(size=(100, 3)) # output index must be 1D or same dimension as input with pytest.raises(SelectionError): q = Query("Position[:,:2] < 0.5") mask = q.get_mask(data)
def test_is_not(self): data = numpy.zeros(5, dtype=[('mass', 'int')]) data['mass'][0] = 1 q = Query("mass is not 0") m = q.get_mask(data) self.assertTrue(m.sum() == 1) self.assertTrue(m[0] == True)
def test_compound_log(self): data = numpy.zeros(100, dtype=[('mass', float)]) data['mass'] = numpy.random.random(size=100) ans = (data['mass'] < 0.5 * numpy.log(2.)) q = Query("mass < 0.5*log(2)") mask = q.get_mask(data) self.assertTrue(numpy.all(ans == mask))
def test_minus(self): data = numpy.zeros(100, dtype=[('mass', float)]) data['mass'] = numpy.random.random(size=100) ans = (data['mass'] < 0.25) q = Query("mass < 0.5-0.125-0.125") mask = q.get_mask(data) self.assertTrue(numpy.all(ans == mask))
def test_nan(self): data = numpy.zeros(5, dtype=[('mass', 'f8')]) data['mass'][0] = numpy.nan q = Query("mass is nan") m = q.get_mask(data) self.assertTrue(m.sum() == 1) self.assertTrue(m[0] == True)
def test_index(self): data = numpy.zeros(100, dtype=[('Position', (float, 3))]) data['Position'] = numpy.random.random(size=(100, 3)) ans = (data['Position'][:, 0] < 0.5) & (data['Position'][:, -1] >= 0.7) q = Query("Position[:,0] < 0.5 and Position[:,-1] >= 0.7") mask = q.get_mask(data) self.assertTrue(numpy.all(ans == mask))
def test_column_log10(self): data = numpy.zeros(100, dtype=[('mass', float)]) data['mass'] = numpy.random.random(size=100) ans = numpy.log10(data['mass']) > -0.5 q = Query("log10(mass) > -0.5") mask = q.get_mask(data) self.assertTrue(numpy.all(ans == mask))
def test_not_inf(self): data = numpy.zeros(5, dtype=[('mass', 'f8')]) data['mass'][0] = numpy.inf q = Query("mass is not inf") m = q.get_mask(data) self.assertTrue(m.sum() == len(data) - 1) self.assertTrue(m[0] == False)
def test_exp(self): data = numpy.zeros(100, dtype=[('mass', float)]) data['mass'] = numpy.random.random(size=100) ans = (data['mass'] < numpy.exp(-0.9)) q = Query("mass < exp(-0.9))") mask = q.get_mask(data) self.assertTrue(numpy.all(ans == mask))
def test_gt(self): data = numpy.zeros(5, dtype=[('mass', 'int')]) data['mass'][0] = 1 data['mass'][1] = 2 q = Query("mass > 1") m = q.get_mask(data) self.assertTrue(m.sum() == 1) self.assertTrue(m[1] == True)
def test_lt(self): data = numpy.zeros(5, dtype=[('mass', 'int')]) data['mass'][0] = 1 data['mass'][1] = 2 q = Query("mass < 1") m = q.get_mask(data) self.assertTrue(m.sum() == len(data) - 2) self.assertTrue((m[0] == False) and (m[1] == False))
def test_compound_index(self): data = numpy.zeros(100, dtype=[('Position', (float, 3)), ('velocity', int)]) data['Position'] = numpy.random.random(size=(100, 3)) data['velocity'] = numpy.random.choice([0, 1, 2], size=100) ans = (data['Position'][:, 1] < 0.5) | (data['velocity'] == 2) q = Query("Position[:,1] < 0.5 or velocity == 2") mask = q.get_mask(data) self.assertTrue(numpy.all(ans == mask))