opt.use_int8_inference = True opt.use_vulkan_compute = use_vulkan_compute opt.use_fp16_packed = True opt.use_fp16_storage = True opt.use_fp16_arithmetic = True opt.use_int8_storage = True opt.use_int8_arithmetic = True opt.use_packing_layout = True ncnn.set_cpu_powersave(powersave) ncnn.set_omp_dynamic(0) ncnn.set_omp_num_threads(num_threads) print("loop_count = %d" % (loop_count)) print("num_threads = %d" % (num_threads)) print("powersave = %d" % (ncnn.get_cpu_powersave())) print("gpu_device = %d" % (gpu_device)) #must use named param w, h, c due to python has no size_t(unsigned int) to call the correct overload ncnn.Mat benchmark("squeezenet", ncnn.Mat(w=227, h=227, c=3), opt) benchmark("squeezenet_int8", ncnn.Mat(w=227, h=227, c=3), opt) benchmark("mobilenet", ncnn.Mat(w=224, h=224, c=3), opt) benchmark("mobilenet_int8", ncnn.Mat(w=224, h=224, c=3), opt) benchmark("mobilenet_v2", ncnn.Mat(w=224, h=224, c=3), opt) benchmark("mobilenet_v3", ncnn.Mat(w=224, h=224, c=3), opt) benchmark("shufflenet", ncnn.Mat(w=224, h=224, c=3), opt) benchmark("shufflenet_v2", ncnn.Mat(w=224, h=224, c=3), opt) benchmark("mnasnet", ncnn.Mat(w=224, h=224, c=3), opt) benchmark("proxylessnasnet", ncnn.Mat(w=224, h=224, c=3), opt) benchmark("googlenet", ncnn.Mat(w=224, h=224, c=3), opt) benchmark("googlenet_int8", ncnn.Mat(w=224, h=224, c=3), opt)
opt.use_fp16_packed = True opt.use_fp16_storage = True opt.use_fp16_arithmetic = True opt.use_int8_storage = True opt.use_int8_arithmetic = True opt.use_packing_layout = True opt.use_shader_pack8 = False opt.use_image_storage = False ncnn.set_cpu_powersave(powersave) ncnn.set_omp_dynamic(0) ncnn.set_omp_num_threads(num_threads) print("loop_count =", loop_count) print("num_threads =", num_threads) print("powersave =", ncnn.get_cpu_powersave()) print("gpu_device =", gpu_device) print("cooling_down =", g_enable_cooling_down) benchmark("squeezenet", ncnn.Mat((227, 227, 3)), opt) benchmark("squeezenet_int8", ncnn.Mat((227, 227, 3)), opt) benchmark("mobilenet", ncnn.Mat((224, 224, 3)), opt) benchmark("mobilenet_int8", ncnn.Mat((224, 224, 3)), opt) benchmark("mobilenet_v2", ncnn.Mat((224, 224, 3)), opt) # benchmark("mobilenet_v2_int8", ncnn.Mat(w=224, h=224, c=3), opt) benchmark("mobilenet_v3", ncnn.Mat((224, 224, 3)), opt) benchmark("shufflenet", ncnn.Mat((224, 224, 3)), opt) benchmark("shufflenet_v2", ncnn.Mat((224, 224, 3)), opt) benchmark("mnasnet", ncnn.Mat((224, 224, 3)), opt) benchmark("proxylessnasnet", ncnn.Mat((224, 224, 3)), opt) benchmark("efficientnet_b0", ncnn.Mat((224, 224, 3)), opt)