Exemple #1
0
 def compute(self, roi: Tuple[DataRoi, ConnectedComponentsExtractor]) -> Array5D:
     """Outputs a Array5D where shape.x is the highest label extracted from the provided DataRoi. Channels are the stacked
     channels of the features in self.feature_names"""
     feature_map = self.get_timewise_feature_map(roi)
     timewise_features = [
         Array5D.from_stack(list(frame_features.values()), stack_along="c")
         for frame_features in feature_map.values()
     ]
     return Array5D.from_stack(timewise_features, stack_along="t")
Exemple #2
0
def test_from_stack():
    stack = [
        Array5D(numpy.asarray([[0, 1, 2], [3, 4, 5], [6, 7, 8]]), axiskeys="yx"),
        Array5D(numpy.asarray([[7, 2, 2], [3, 1, 5], [2, 7, 3]]), axiskeys="yx"),
        Array5D(numpy.asarray([[4, 2, 1], [3, 4, 0], [2, 4, 1]]), axiskeys="yx"),
    ]

    z_stacked = Array5D.from_stack(stack, stack_along="z")
    for i in range(len(stack)):
        assert (z_stacked.cut(Slice5D(z=i)).raw("yx") == stack[i].raw("yx")).all()

    y_stacked = Array5D.from_stack(stack, stack_along="y")
    for i in range(len(stack)):
        stack_slc = Slice5D(y=slice(3 * i, 3 * (i + 1)))
        assert (y_stacked.cut(stack_slc).raw("yx") == stack[i].raw("yx")).all()