def __init__(self,h_img:int,w_img:int,nbChannels:int,nbCategories,nbRegressor,favoritism,depth0,depth1): self.nbConsecutiveOptForOneFit=1 self.summaryEither_cat_proba=0 self.nbRegressor=nbRegressor (self.batch_size,self.h_img, self.w_img, self.nbChannels)=(None,h_img,w_img,nbChannels) self.nbCategories=nbCategories """ PLACEHOLDER """ self._X = tf.placeholder(name="X", dtype=tf.float32,shape=(None,h_img,w_img,nbChannels)) """les annotations : une image d'entier, chaque entier correspond à une catégorie""" self._Y_cat = tf.placeholder(dtype=tf.int32, shape=[None, h_img, w_img], name="Y_cat" ) self._Y_reg = tf.placeholder(dtype=tf.float32, shape=[None, h_img, w_img,nbRegressor], name="Y_cat" ) self._itr = tf.placeholder(name="itr", dtype=tf.float32) self.keep_proba=tf.get_variable("keep_proba",initializer=1.,trainable=False) self.learning_rate=tf.get_variable("learning_rate",initializer=1e-2,trainable=False) """la sorties est un volume 7*7*64. """ encoder = Encoder(self._X, nbChannels) self.hat=Decoder(encoder, nbCategories, self.keep_proba, favoritism, depth0, depth1) self.hat_reg=Decoder(encoder, self.nbRegressor, self.keep_proba, favoritism, depth0, depth1) """ les loss qu'on suivra sur le long terme. Les coef, c'est juste pour avoir des grandeurs faciles à lire """ self.where=tf.cast((self._Y_cat!=0),dtype=tf.float32) self._loss_reg = 0.1 * tf.reduce_mean(self.where*(self._Y_reg-self.hat_reg.Y_logits)**2) self._loss_cat =tf.reduce_mean((tf.nn.sparse_softmax_cross_entropy_with_logits(logits=self.hat.Y_logits, labels=self._Y_cat))) self._penalty=10*sobel_penalty(self.hat.Y_proba,self.nbCategories) """ si le coef devant la _loss_background est trop grand, la loss_instance reste bloquée à 0. mais s'il est trop petit le background se transforme en damier !""" self._loss=self._loss_cat + self._loss_reg tf.summary.scalar("log loss", tf.log(self._loss)) tf.summary.scalar("log loss reg", tf.log(self._loss_reg)) tf.summary.scalar("log loss cat", tf.log(self._loss_cat)) tf.summary.scalar("log penalty", tf.log(self._penalty)) """ optimizer, monitoring des gradients """ adam_opt = tf.train.AdamOptimizer(self.learning_rate) _grads_vars = adam_opt.compute_gradients(self._loss) # for index, grad in enumerate(_grads_vars): # tf.summary.histogram("{}-grad".format(_grads_vars[index][0].name), _grads_vars[index][0]) # tf.summary.histogram("{}-var".format(_grads_vars[index][1].name), _grads_vars[index][1]) # if len(_grads_vars[index][0].get_shape().as_list())==4: # ing.summarizeW_asImage(_grads_vars[index][0]) self._summary = tf.summary.merge_all() """ la minimisation est faite via cette op: """ self.step_op = adam_opt.apply_gradients(_grads_vars) self.sess = tf.Session() self.sess.run(tf.global_variables_initializer()) self.verbose=True max_outputs=8 tf.summary.image("input_image", self._X, max_outputs=max_outputs) if self.summaryEither_cat_proba==0: output = tf.expand_dims(tf.cast(self.hat.Y_cat,dtype=tf.float32),3) output_color = ing.colorize(output, vmin=0.0, vmax=self.nbCategories, cmap='plasma') #'viridis', 'plasma', 'inferno', 'magma' tf.summary.image("Y_hat",output_color) for i in range(self.nbRegressor): output2 = tf.expand_dims(tf.cast(self.hat_reg.Y_logits[:,:,:,i], dtype=tf.float32), 3) """ maxNbStrate depend of the size of cells. """ output_color2 = ing.colorize(output2, vmin=None, vmax=None,cmap='plasma') # 'viridis', 'plasma', 'inferno', 'magma' tf.summary.image("Y_reg_hat"+str(i), output_color2) else : for cat in range(0,self.nbCategories): tf.summary.image("hat_proba cat"+str(cat), tf.expand_dims(self.hat.Y_proba[:,:,:,cat],3), max_outputs=max_outputs) self._summary=tf.summary.merge_all()
def __init__(self, h_img: int, w_img: int, nbChannels: int, nbCategories, favoritism, depth0, depth1): self.nbConsecutiveOptForOneFit = 1 self.summaryEither_cat_proba = 0 (self.batch_size, self.h_img, self.w_img, self.nbChannels) = (None, h_img, w_img, nbChannels) self.nbCategories = nbCategories """ PLACEHOLDER """ self._X = tf.placeholder(name="X", dtype=tf.float32, shape=(None, h_img, w_img, nbChannels)) """les annotations : une image d'entier, chaque entier correspond à une catégorie""" self._Y_proba = tf.placeholder( dtype=tf.float32, shape=[None, h_img, w_img, nbCategories], name="Y") self._itr = tf.placeholder(name="itr", dtype=tf.float32) self.keep_proba = tf.get_variable("keep_proba", initializer=1., trainable=False) self.learning_rate = tf.get_variable("learning_rate", initializer=1e-2, trainable=False) self.hat = Hat_fullyConv(self._X, nbChannels, nbCategories, self.keep_proba, favoritism, depth0, depth1) """ les loss qu'on suivra sur le long terme. Le *10 c'est juste pour mieux interpréter """ self._loss_instances = -10 * matching_IoU_batch( self._Y_proba[:, :, :, 1:], self.hat.Y_proba[:, :, :, 1:]) self._loss_background = -10 * just_IoU_batch( self._Y_proba[:, :, :, 0], self.hat.Y_proba[:, :, :, 0]) self._penalty = 10 * sobel_penalty(self.hat.Y_proba, self.nbCategories) """ si le coef devant la _loss_background est trop grand, la loss_instance reste bloquée à 0. mais s'il est trop petit le background se transforme en damier !""" self._loss = self._loss_instances + tf.nn.sigmoid( self._itr - 5) * self._loss_background + 5. * self._penalty tf.summary.scalar("loss", self._loss) tf.summary.scalar("loss instances", self._loss_instances) tf.summary.scalar("loss background", self._loss_background) tf.summary.scalar("penalty", self._penalty) """ optimizer, monitoring des gradients """ adam_opt = tf.train.AdamOptimizer(self.learning_rate) _grads_vars = adam_opt.compute_gradients(self._loss) for index, grad in enumerate(_grads_vars): tf.summary.histogram("{}-grad".format(_grads_vars[index][0].name), _grads_vars[index][0]) tf.summary.histogram("{}-var".format(_grads_vars[index][1].name), _grads_vars[index][1]) if len(_grads_vars[index][0].get_shape().as_list()) == 4: ing.summarizeW_asImage(_grads_vars[index][0]) self._summary = tf.summary.merge_all() """ la minimisation est faite via cette op: """ self.step_op = adam_opt.apply_gradients(_grads_vars) self.sess = tf.Session() self.sess.run(tf.global_variables_initializer()) self.verbose = True max_outputs = 4 tf.summary.image("input_image", self._X, max_outputs=max_outputs) if self.summaryEither_cat_proba == 0: output = tf.expand_dims(tf.cast(self.hat.Y_cat, dtype=tf.float32), 3) output_color = ing.colorize( output, vmin=0.0, vmax=self.nbCategories, cmap='plasma') #'viridis', 'plasma', 'inferno', 'magma' tf.summary.image("Y_hat", output_color) else: for cat in range(0, self.nbCategories): tf.summary.image("hat_proba cat" + str(cat), tf.expand_dims(self.hat.Y_proba[:, :, :, cat], 3), max_outputs=max_outputs) self._summary = tf.summary.merge_all()
def __init__(self, h_img: int, w_img: int, nbChannels: int, nbCategories, favoritism, depth0, depth1): self.nbConsecutiveOptForOneFit = 1 self.summaryEither_cat_proba = 0 (self.batch_size, self.h_img, self.w_img, self.nbChannels) = (None, h_img, w_img, nbChannels) self.nbCategories = nbCategories """ PLACEHOLDER """ self._X = tf.placeholder(name="X", dtype=tf.float32, shape=(None, h_img, w_img, nbChannels)) """les annotations : une image d'entier, chaque entier correspond à une catégorie""" self._Y_cat = tf.placeholder(dtype=tf.float32, shape=[None, h_img, w_img, nbCategories], name="Y_cat") self._Y_background = tf.placeholder(dtype=tf.float32, shape=[None, h_img, w_img, 2], name="Y_background") self._itr = tf.placeholder(name="itr", dtype=tf.int32) self.keep_proba = tf.get_variable("keep_proba", initializer=1., trainable=False) self.learning_rate = tf.get_variable("learning_rate", initializer=1e-2, trainable=False) """la sorties est un volume 7*7*64. """ encoder = Encoder(self._X, nbChannels) self.hat = Decoder(encoder, nbCategories, self.keep_proba, favoritism, depth0, depth1, True) self.hat_background = Decoder(encoder, 2, self.keep_proba, favoritism, depth0, depth1, False) """ les loss qu'on suivra sur le long terme. Les coef, c'est juste pour avoir des grandeurs faciles à lire """ where = tf.cast((self._Y_background[:, :, :, 1] == 1), dtype=tf.float32) self._loss_background = -tf.reduce_mean( self._Y_background * tf.log(self.hat_background.Y_proba + 1e-10)) self._loss_cat = ing.crossEntropy_multiLabel(self._Y_cat, self.hat.Y_proba) self._penalty = 10 * sobel_penalty(self.hat.Y_proba, self.nbCategories) """ si le coef devant la _loss_background est trop grand, la loss_instance reste bloquée à 0. mais s'il est trop petit le background se transforme en damier !""" self._loss = self._loss_cat #+self._loss_background tf.summary.scalar("loss", self._loss) tf.summary.scalar("loss cat", self._loss_cat) tf.summary.scalar("loss background", self._loss_background) tf.summary.scalar("penalty", self._penalty) tf.summary.histogram("hat_Y_cat", self.hat.Y_proba) shape = self.hat.Y_proba[0, :, :, :].get_shape().as_list() tf.summary.scalar( "zero of Y_hat_proba", tf.count_nonzero(self.hat.Y_proba[0, :, :, :]) - shape[0] * shape[1] * shape[2]) """ optimizer, monitoring des gradients """ adam_opt = tf.train.AdamOptimizer(self.learning_rate) _grads_vars = adam_opt.compute_gradients(self._loss) # for index, grad in enumerate(_grads_vars): # tf.summary.histogram("{}-grad".format(_grads_vars[index][0].name), _grads_vars[index][0]) # tf.summary.histogram("{}-var".format(_grads_vars[index][1].name), _grads_vars[index][1]) # if len(_grads_vars[index][0].get_shape().as_list())==4: # ing.summarizeW_asImage(_grads_vars[index][0]) self._summary = tf.summary.merge_all() """ la minimisation est faite via cette op: """ self.step_op = adam_opt.apply_gradients(_grads_vars) self.rien = tf.ones(1) self.sess = tf.Session() self.sess.run(tf.global_variables_initializer()) self.verbose = True max_outputs = 8 tf.summary.image("input_image", self._X, max_outputs=max_outputs) self._Y_cat_sum = tf.reduce_sum(self._Y_cat, axis=3) if self.summaryEither_cat_proba == 0: output = tf.expand_dims( tf.cast(self.hat.Y_cat_sum, dtype=tf.float32), 3) output_color = ing.colorize(output, vmin=0.0, vmax=self.nbCategories, cmap='plasma') tf.summary.image("Y hat strates", output_color, max_outputs=max_outputs) # output = tf.expand_dims(tf.cast(self._Y_cat_sum,dtype=tf.float32),3) # output_color = ing.colorize(output, vmin=0.0, vmax=self.nbCategories, cmap='plasma') #'viridis', 'plasma', 'inferno', 'magma' # tf.summary.image("ground truth",output_color) # # output = tf.expand_dims(tf.cast(self.hat.Y_cat_sum, dtype=tf.float32), 3) # output_color = ing.colorize(output, vmin=None, vmax=None, # cmap='plasma') # 'viridis', 'plasma', 'inferno', 'magma' # tf.summary.image("hat strates", output_color) # # # output = tf.expand_dims(tf.cast(self.hat_background.Y_proba[:,:,:,0], dtype=tf.float32), 3) # output_color = ing.colorize(output, vmin=0.0, vmax=self.nbCategories, # cmap='plasma') # 'viridis', 'plasma', 'inferno', 'magma' # tf.summary.image("hat background", output_color) else: for cat in range(0, self.nbCategories): tf.summary.image("hat_proba cat" + str(cat), tf.expand_dims(self.hat.Y_proba[:, :, :, cat], 3), max_outputs=max_outputs) self._summary = tf.summary.merge_all()