Exemple #1
0
 def test_evolution(self):
     p = Population(10, 3, 1)
     entire_population = []
     for k, v in p.population.items():
         if k != 's0':
             entire_population = entire_population + v
         pass
     p.evolve_species(p.population.get('s0'), entire_population, 2)
Exemple #2
0
class NEATRunner(BaseTrainer):
    def __init__(
            self,
            config: Config,
            evaluator: GymEvaluator,
            reporters: Optional[Sequence[BaseReporter]] = None,
            num_workers: Optional[int] = multiprocessing.cpu_count(),
    ):
        self._evaluator = evaluator

        self._population = Population(config)

        reporters = reporters or []
        for reporter in reporters:
            self._population.add_reporter(reporter)

        self._num_workers = num_workers

    def _train(self, num_frames: Optional[int],
               stop_time: Optional[int]) -> DefaultGenome:
        if self._num_workers is None:
            func = lambda g, c: self._evaluate_population_fitness(
                g, c, num_frames)
        else:
            parallel = ParallelEvaluator(
                num_workers=self._num_workers,
                evaluator=self._evaluator,
                max_num_frames=num_frames or float('inf'),
            )
            func = parallel.evaluate

        if stop_time is not None:
            # it may not be 100% reliable but it's the best we can achieve without writing a custom
            # parallel executor
            func = _timeout_func(func, time(), stop_time)

        try:
            return self._population.run(
                fitness_function=func,
                n=float('inf'),
            )
        except TimeoutError:
            return self._population.best_genome

    def _evaluate_population_fitness(
        self,
        genomes: Sequence[Tuple[int, DefaultGenome]],
        config: Config,
        max_num_frames: int,
    ):
        if self._evaluator.num_frames >= max_num_frames:
            raise TimeoutError()

        for _, genome in genomes:
            genome.fitness, num_frames = self._evaluator.evaluate(
                genome, config)
            self._evaluator.num_frames += num_frames
Exemple #3
0
    def __init__(
            self,
            config: Config,
            evaluator: GymEvaluator,
            reporters: Optional[Sequence[BaseReporter]] = None,
            num_workers: Optional[int] = multiprocessing.cpu_count(),
    ):
        self._evaluator = evaluator

        self._population = Population(config)

        reporters = reporters or []
        for reporter in reporters:
            self._population.add_reporter(reporter)

        self._num_workers = num_workers
Exemple #4
0
 def test_evolution(self):
     p = Population(10, 3, 1)
     status = p.get_status()
     for s in status.keys():
         output = []
         for i in range(status.get(s, 0)):
             output.append(p.run(s, i, [1, 2, 3]))
             p.set_score(s, i, 1)
     p.evolve()
def learn_cartpole(config_path):
    env = gym.make('CartPole-v0')
    env._max_episode_steps = max_evaluation_steps

    # Load configuration.
    config = Config(StateMachineGenome, DefaultReproduction,
                         DefaultSpeciesSet, DefaultStagnation,
                         config_path)

    # Create the population, which is the top-level object for a NEAT run.
    p = Population(config)

    # Add a stdout reporter to show progress in the terminal.
    p.add_reporter(StdOutReporter(True))
    stats = StatisticsReporter()
    p.add_reporter(stats)

    # Run for up for the given number of generations
    f = lambda genomes, config: eval_genomes(genomes, config, env=env)
    winner = p.run(f, num_generations)

    input("Press Enter to continue...")

    net = StateMachineNetwork.create(winner, config)
    eval_network(net, env, True)
Exemple #6
0
    def test_another_crossover(self):
        g1 = Genome(3, 1)
        g2 = Genome(3, 1)

        node_i = 4
        conn_i = 0

        for generation in range(10):
            conn_i = g1.mutate_connections(conn_i)
            node_i, conn_i = g1.mutate_nodes(node_i, conn_i)
            conn_i = g2.mutate_connections(conn_i)
            node_i, conn_i = g2.mutate_nodes(node_i, conn_i)

            a1, a2 = Population.align_genome(g1, g2)
            g1 = Population.crossover(a1, a2, g1.get_input_nodes(), g1.get_output_nodes())
            g2 = Population.crossover(a1, a2, g1.get_input_nodes(), g1.get_output_nodes())

        Printer(g1).print()
Exemple #7
0
    def test_align_genome(self):
        g1 = Genome(3, 1)
        g1.create_node(Node.TYPE_HIDDEN, 5)
        g1.connect_nodes_by_id(1, 4, 1)
        g1.connect_nodes_by_id(2, 4, 2)
        g1.connect_nodes_by_id(3, 4, 3)
        g1.connect_nodes_by_id(2, 5, 4)
        g1.connect_nodes_by_id(5, 4, 5)
        g1.connect_nodes_by_id(1, 5, 8)

        g2 = Genome(3, 1)
        g2.create_node(Node.TYPE_HIDDEN, 5)
        g2.create_node(Node.TYPE_HIDDEN, 6)

        g2.connect_nodes_by_id(1, 4, 1)
        g2.connect_nodes_by_id(2, 4, 2)
        g2.connect_nodes_by_id(3, 4, 3)
        g2.connect_nodes_by_id(2, 5, 4)
        g2.connect_nodes_by_id(5, 4, 5)
        g2.connect_nodes_by_id(5, 6, 6)
        g2.connect_nodes_by_id(6, 4, 7)
        g2.connect_nodes_by_id(3, 5, 9)
        g2.connect_nodes_by_id(1, 6, 10)

        # p = Population(2, 3, 1)
        # p.population['s0'] = [g1, g2]

        a1, a2 = Population.align_genome(g1, g2)

        self.assertEqual(1, a1[0].get_innovation())
        self.assertEqual(2, a1[1].get_innovation())
        self.assertEqual(3, a1[2].get_innovation())
        self.assertEqual(4, a1[3].get_innovation())
        self.assertEqual(5, a1[4].get_innovation())
        self.assertEqual(None, a1[5])
        self.assertEqual(None, a1[6])
        self.assertEqual(8, a1[7].get_innovation())
        self.assertEqual(None, a1[8])
        self.assertEqual(None, a1[9])

        self.assertEqual(1, a2[0].get_innovation())
        self.assertEqual(2, a2[1].get_innovation())
        self.assertEqual(3, a2[2].get_innovation())
        self.assertEqual(4, a2[3].get_innovation())
        self.assertEqual(5, a2[4].get_innovation())
        self.assertEqual(6, a2[5].get_innovation())
        self.assertEqual(7, a2[6].get_innovation())
        self.assertEqual(None, a2[7])
        self.assertEqual(9, a2[8].get_innovation())
        self.assertEqual(10, a2[9].get_innovation())
def play():
    env = gym.make('CartPole-v1')
    ob = env.reset()

    p = Population.load(FULLNAME)

    winner = p.get_winner()

    while True:
        action = winner.run(ob)
        ob, reward, done, info = env.step(np.argmax(action))
        env.render()
        if done:
            ob = env.reset()
Exemple #9
0
    def test_flow(self):
        p = Population(10, 3, 1)
        for _ in range(100):
            status = p.get_status()
            for s in status.keys():
                output = []
                for i in range(status.get(s, 0)):
                    out = p.run(s, i, [1, 2, 3])[0]
                    output.append(out)
                    p.set_score(s, i, random.randrange(1, 10))
                print(s, output)
            p.evolve()

        # print a sample
        pr = Printer(p.population[next(iter(p.population))][0])
        pr.print()
Exemple #10
0
def play():
    env = gym.make('LunarLanderContinuous-v2')
    ob = env.reset()

    p = Population.load(FULLNAME)

    winner = p.get_winner()

    while True:
        action = action_final_activation(winner.run(ob))
        print('Action: {}'.format(action))
        ob, reward, done, info = env.step(action)
        env.render()
        if done:
            ob = env.reset()
Exemple #11
0
    def test_crossover(self):
        g1 = Genome(3, 1)
        g1.create_node(Node.TYPE_HIDDEN, 5)
        g1.connect_nodes_by_id(1, 4, 1)
        g1.connect_nodes_by_id(2, 4, 2)
        g1.connect_nodes_by_id(3, 4, 3)
        g1.connect_nodes_by_id(2, 5, 4)
        g1.connect_nodes_by_id(5, 4, 5)
        g1.connect_nodes_by_id(1, 5, 8)

        g2 = Genome(3, 1)
        g2.create_node(Node.TYPE_HIDDEN, 5)
        g2.create_node(Node.TYPE_HIDDEN, 6)

        g2.connect_nodes_by_id(1, 4, 1)
        g2.connect_nodes_by_id(2, 4, 2)
        g2.connect_nodes_by_id(3, 4, 3)
        g2.connect_nodes_by_id(2, 5, 4)
        g2.connect_nodes_by_id(5, 4, 5)
        g2.connect_nodes_by_id(5, 6, 6)
        g2.connect_nodes_by_id(6, 4, 7)
        g2.connect_nodes_by_id(3, 5, 9)
        g2.connect_nodes_by_id(1, 6, 10)

        p = Population(2, 3, 1)
        p.population[0] = g1
        p.population[1] = g2

        a1, a2 = Population.align_genome(g1, g2)

        g3 = Population.crossover(a1, a2, g1.get_input_nodes(), g1.get_output_nodes())

        self.assertEqual(10, len(g3.connections))
        self.assertEqual(6, len(g3.nodes))

        self.assertEqual(1, g3.select_connection_by_innovation(1).get_innovation())
        self.assertEqual(2, g3.select_connection_by_innovation(2).get_innovation())
        self.assertEqual(3, g3.select_connection_by_innovation(3).get_innovation())
        self.assertEqual(4, g3.select_connection_by_innovation(4).get_innovation())
        self.assertEqual(5, g3.select_connection_by_innovation(5).get_innovation())
        self.assertEqual(6, g3.select_connection_by_innovation(6).get_innovation())
        self.assertEqual(7, g3.select_connection_by_innovation(7).get_innovation())
        self.assertEqual(8, g3.select_connection_by_innovation(8).get_innovation())
        self.assertEqual(9, g3.select_connection_by_innovation(9).get_innovation())
        self.assertEqual(10, g3.select_connection_by_innovation(10).get_innovation())

        self.assertEqual((2, 3), Population.calculate_excess_disjoint(g1, g2))
        self.assertEqual(5, species_distance(g1, g2))
Exemple #12
0
    def _epoch(self):
        if self.current_generation == 0:
            self.population = Population(self.configuration)
        else:
            # Create the next generation from the current generation.
            self.population.population = self.population.reproduction.reproduce(
                self.population.config, self.population.species,
                self.population.config.pop_size, self.population.generation)

            # Check for complete extinction.
            if not self.population.species.species:
                self.population.reporters.complete_extinction()

                # If requested by the user, create a completely new population,
                # otherwise raise an exception.
                if self.population.config.reset_on_extinction:
                    self.population.population = self.population.reproduction.create_new(
                        self.population.config.genome_type,
                        self.population.config.genome_config,
                        self.population.config.pop_size)
                else:
                    raise CompleteExtinctionException()

        # Evaluate all genomes using the user-provided function.
        self._eval_genomes(list(iteritems(self.population.population)),
                           self.population.config)
        # Gather and report statistics.
        best = None
        for g in itervalues(self.population.population):
            if best is None or g.fitness > best.fitness:
                best = g
        # Track the best genome ever seen.
        if self.population.best_genome is None or best.fitness > self.population.best_genome.fitness:
            self.population.best_genome = best
        self.champion = self.population.best_genome
        # Divide the new population into species.
        self.population.species.speciate(self.population.config,
                                         self.population.population,
                                         self.population.generation)
        return self.stopping_criterion.evaluate(self)
Exemple #13
0
def print_population():
    g = Population.load(FULLNAME).get_winner()
    Printer(g).print()
def ttt_test(config):
    gens = config['max_generations']
    
    pop = None
    start_genome = None
    
    #//Hold records for each run
    evals = [ 0 for i in range(neatconfig.num_runs) ]
    genes = [ 0 for i in range(neatconfig.num_runs) ]
    nodes = [ 0 for i in range(neatconfig.num_runs) ]

    # Made as lists for pass-by-reference
    winnernum = [ 0 ]
    winnergenes = [ 0 ]
    winnernodes = [ 0 ]
    
    #//For averaging
    totalevals = 0
    totalgenes = 0
    totalnodes = 0
    
    dprint(DEBUG_INFO, "START TTT TEST")

    if config['seed_with_start_genome']:
        gene_filename = neatconfig.genedir + "/" + config['start_genome_file']
        iFile = open(gene_filename, "r")
        if not iFile:
            dprint(DEBUG_ERROR, "Unable to open starting genome file %s." % (gene_filename, ))
            return pop
        dprint(DEBUG_INFO, "Opened start genome file %s." % (gene_filename, ))
    

        #//Read in the start Genome
        dprint(DEBUG_INFO, "Reading in the start genome")
        line = iFile.readline()
        words = line.strip().split()
        curword = words[0]
        gid = int(words[1])
        if curword != "genomestart":
            dprint(DEBUG_ERROR, "Bad starting genome file %s." % (gene_filename, ))
            return pop
        
        dprint(DEBUG_INFO, "Reading in Genome id %d." % (gid,))
        start_genome = Genome()
        start_genome.SetFromFile(gid, iFile)
        iFile.close()
    
        dprint(DEBUG_INFO, "Verifying start_genome")
        if not start_genome.verify():
            dprint(DEBUG_ERROR, "genome.verify() failed:", start_genome.deep_string())

    #Complete a number of runs
    for expcount in range(neatconfig.num_runs):
        
        if config['seed_with_start_genome']:
        
            #//Spawn the Population
            dprint(DEBUG_INFO, "Spawning Population off Genome")
            pop = Population()
            pop.SetFromGenome(start_genome, neatconfig.pop_size)
            
            dprint(DEBUG_INFO, "Verifying Spawned Population[%d]" % (expcount, ))
            if not pop.verify():
                dprint(DEBUG_ERROR, "Population[%d] verification failed" % (expcount, ))
                
        elif config['seed_with_previous_population']:
            population_filename = neatconfig.genedir + "/" + config['previous_population_file']
            dprint(DEBUG_INFO, "Reading Population from %s" % (population_filename, ))
            pop = Population()
            pop.SetFromFilename(population_filename)
            
            dprint(DEBUG_INFO, "Verifying Start Population[%d]" % (expcount, ))
            if not pop.verify():
                dprint(DEBUG_ERROR, "Population[%d] verification failed" % (expcount, ))


        #// evolve up to gens generations
        gen = 1
        while gen <= gens:
            dprint(DEBUG_INFO, "Evaluating Spawned Population[%d] Epoch[%d]" % (expcount, gen))
            # if not pop.verify():
            #     dprint(DEBUG_ERROR, "Population[%d] Epoch[%d] verification failed" % (expcount, gen))

            #print "Epoch", gen
            generation_filename = neatconfig.generationdir + "/tttgen_%d" % (gen,)

            # Evaluate one generation, checking for a successful end
            #//Check for success
            if ttt_epoch(pop, gen, generation_filename, winnernum, winnergenes, winnernodes):
                evals[expcount] = neatconfig.pop_size * (gen-1) + winnernum[0]
                genes[expcount] = winnergenes[0]
                nodes[expcount] = winnernodes[0]
                break

            # in case we want to change after run has started
            config = ttt_read_config(neatconfig.configdir + '/ttt.config')
            gens = config['max_generations']
            gen += 1

        # end of generation loop
        if g_found_optimal:
            break
    # end of num_runs loop

    #//Average and print stats
    dprint(DEBUG_INFO, "Nodes: ")
    for expcount in range(neatconfig.num_runs):
        dprint(DEBUG_INFO, nodes[expcount])
        totalnodes += nodes[expcount]
    
    dprint(DEBUG_INFO, "Genes: ")
    for expcount in range(neatconfig.num_runs):
        dprint(DEBUG_INFO, genes[expcount])
        totalgenes += genes[expcount]
    
    dprint(DEBUG_INFO, "Evals ")
    samples = 0
    for expcount in range(neatconfig.num_runs):
        dprint(DEBUG_INFO, evals[expcount])
        if evals[expcount] > 0:
            totalevals += evals[expcount]
            samples += 1

    if samples > 0:
        avgnodes = float(totalnodes)/samples
        avggenes = float(totalgenes)/samples
        avgevals = float(totalevals)/samples
    else:
        avgnodes = 0
        avggenes = 0
        avgevals = 0
        
    dprint(DEBUG_INFO, "Failures:", (neatconfig.num_runs - samples), "out of", neatconfig.num_runs, "runs")
    dprint(DEBUG_INFO, "Average Nodes:", avgnodes)
    dprint(DEBUG_INFO, "Average Genes:", avggenes)
    dprint(DEBUG_INFO, "Average Evals:", avgevals)

    return pop
def xor_test(gens):
    gene_filename = neatconfig.genedir + "/xorstartgenes"
    
    pop = None
    start_genome = None
    
    #//Hold records for each run
    evals = [ 0 for i in range(neatconfig.num_runs) ]
    genes = [ 0 for i in range(neatconfig.num_runs) ]
    nodes = [ 0 for i in range(neatconfig.num_runs) ]

    # Made as lists for pass-by-reference
    winnernum = [ 0 ]
    winnergenes = [ 0 ]
    winnernodes = [ 0 ]
    
    #//For averaging
    totalevals = 0
    totalgenes = 0
    totalnodes = 0

    iFile = open(gene_filename, "r")
    if not iFile:
        dprint(DEBUG_ERROR, "Unable to open starting genome file %s." % (gene_filename, ))
        return pop
    
    print "START XOR TEST"

    #//Read in the start Genome
    print "Reading in the start genome"
    line = iFile.readline()
    words = line.strip().split()
    curword = words[0]
    gid = int(words[1])
    if curword != "genomestart":
        print "Bad starting genome file %s." % (gene_filename, )
        return pop
        
    print "Reading in Genome id %d." % (gid,)
    start_genome = Genome()
    start_genome.SetFromFile(gid, iFile)
    iFile.close()
    
    print "Verifying start_genome"
    if not start_genome.verify():
        dprint(DEBUG_ERROR, "genome.verify() failed:", start_genome.deep_string())

    #Complete a number of runs
    for expcount in range(neatconfig.num_runs):
        #//Spawn the Population
        print "Spawning Population off Genome2"
        pop = Population()
        pop.SetFromGenome(start_genome, neatconfig.pop_size)
      
        print "Verifying Spawned Population[%d]" % (expcount, )
        if not pop.verify():
            dprint(DEBUG_ERROR, "Population[%d] verification failed" % (expcount, ))

        #// evolve up to gens generations
        for gen in range(1, gens+1):
            print "Verifying Spawned Population[%d] Epoch[%d]" % (expcount, gen)
            if not pop.verify():
                dprint(DEBUG_ERROR, "Population[%d] Epoch[%d] verification failed" % (expcount, gen))

            #print "Epoch", gen
            generation_filename = neatconfig.generationdir + "/gen_%d" % (gen,)

            # Evaluate one generation, checking for a successful end
            #//Check for success
            if xor_epoch(pop, gen, generation_filename, winnernum, winnergenes, winnernodes):
                evals[expcount] = neatconfig.pop_size * (gen-1) + winnernum[0]
                genes[expcount] = winnergenes[0]
                nodes[expcount] = winnernodes[0]
                break

        # end of generation loop
        if g_found_optimal:
            break
    # end of num_runs loop

    #//Average and print stats
    print "Nodes: "
    for expcount in range(neatconfig.num_runs):
        print nodes[expcount]
        totalnodes += nodes[expcount]
    
    print "Genes: "
    for expcount in range(neatconfig.num_runs):
        print genes[expcount]
        totalgenes += genes[expcount]
    
    print "Evals "
    samples = 0
    for expcount in range(neatconfig.num_runs):
        print evals[expcount]
        if evals[expcount] > 0:
            totalevals += evals[expcount]
            samples += 1

    if samples > 0:
        avgnodes = float(totalnodes)/samples
        avggenes = float(totalgenes)/samples
        avgevals = float(totalevals)/samples
    else:
        avgnodes = 0
        avggenes = 0
        avgevals = 0
        
    print "Failures:", (neatconfig.num_runs - samples), "out of", neatconfig.num_runs, "runs"
    print "Average Nodes:", avgnodes
    print "Average Genes:", avggenes
    print "Average Evals:", avgevals

    return pop
Exemple #16
0
 def test_empty_crossover(self):
     g1 = Genome(3, 1)
     g2 = Genome(3, 1)
     a1, a2 = Population.align_genome(g1, g2)
     c = Population.crossover(a1, a2, g1.get_input_nodes(), g1.get_output_nodes())
     self.assertGreaterEqual(4, len(c.nodes))
Exemple #17
0
 def __init__(self, network, populationsize):
     self.population = Population(populationsize, network)
     self.network = network
Exemple #18
0
class Trainer:
    def __init__(self, network, populationsize):
        self.population = Population(populationsize, network)
        self.network = network

    #The fitness function rewards based on how accurate the output is
    #Optimal fitness is reached if input[0] is substracted from input[1]
    #Iterations is the amount of training cycles
    #Mutationrate is the chance that offspring is mutated
    #Elitism is the amount of genomes that are put into the next generation without change
    def train(self, iterations, mutationrate, elitism):
        oldFitnessSum = 0
        newFitnessSum = 0
        for i in range(iterations):

            #EVALUATION

            for member in self.population.population:
                self.network.loadDNA(member)

                #repeat network evalutation 5 times for accuracy
                for _ in range(5):
                    #two random inputs
                    inputs = []
                    inputs.append(uniform(-5, 10))
                    inputs.append(uniform(-10, 20))
                    self.network.setInputs(inputs)

                    result = self.network.run()[0]
                    expectation = inputs[0] - inputs[1]
                    #perfect fitness if there is no difference
                    #we also square the difference because we want some dope ass inequality
                    member.fitness += 100 - pow(abs(result - expectation), 2)

            #PRINT GENERATION PROGRESS
            if (i % 2 == 0):
                oldFitnessSum = sum(dna.fitness
                                    for dna in self.population.population)
            else:
                newFitnessSum = sum(dna.fitness
                                    for dna in self.population.population)

            if (oldFitnessSum != 0 and newFitnessSum != 0):
                print("Gen Nr: " + str(i))
                print("Difference between Generation Fitness Sum: " +
                      str(round(newFitnessSum - oldFitnessSum, 2)))
                percentage = (newFitnessSum -
                              oldFitnessSum) / oldFitnessSum * 100
                print("Percentage difference between generation: " +
                      str(round(percentage, 2)) + "%")
                print("New Fitness Sum: " + str(round(newFitnessSum, 2)))
                print(
                    "Highest Fitness: " +
                    str(max(dna.fitness
                            for dna in self.population.population)))

            #CREATE NEW POPULATION

            #best genomes at beginning of list, so we can include them easily (elitism)
            self.population.population.sort(key=lambda x: x.fitness,
                                            reverse=True)
            #dont make a new generation on last iteration, so we can
            #take the population as-is and evaluate it one more time in main.py
            if (i < iterations - 1):
                population2 = []
                #add 5 best genomes unchanged
                for elitismIndex in range(elitism):
                    self.population.population[elitismIndex].fitness = 0
                    population2.append(
                        self.population.population[elitismIndex])
                for _ in range(len(self.population.population) - elitism):
                    parent1 = self.population.rouletteSelect()
                    parent2 = self.population.rouletteSelect()
                    child = self.population.crossover(parent1, parent2)
                    if (uniform(0, 1) < mutationrate):
                        child = self.population.mutate(child)
                    child.fitness = 0
                    population2.append(child)

                self.population.population = population2
        return self.population
import gym

import numpy as np
from neat import Population, Printer

env = gym.make('MountainCar-v0')

done = False

strain_count = 10
passing_score = 500
p = Population(1000, 2, 3)
target_reward = 0.5
max_reward = -999999
winner = None
max_position = -1.2
min_position = 0.6
while True:
    status = p.get_status()
    for s in status.keys():
        output = []
        for i in range(status.get(s, 0)):
            ob = env.reset()
            reward_sum = 200
            while True:
                action = p.run(s, i, ob)
                ob, reward, done, info = env.step(np.argmax(action))
                max_position = np.max([max_position, ob[0]])
                min_position = np.min([min_position, ob[0]])
                reward_sum = reward_sum + reward
                if done:
Exemple #20
0
 def test_status(self):
     p = Population(10, 3, 1)
     status = p.get_status()
     self.assertEqual({'s0': 10}, status)
Exemple #21
0
 def test_init(self):
     p = Population(10, 3, 1)
     self.assertEqual(10, len(p.population.get('s0')))
     self.assertEqual(5, p.node_innovation)
     self.assertEqual(1, p.conn_innovation)
def train():
    env = gym.make('CartPole-v1')

    try:
        p = Population.load(FULLNAME)
        print('Existing state loaded')
    except FileNotFoundError as e:
        print('Creating new state')
        p = Population(1000, env.observation_space.shape[0],
                       env.action_space.n)

    max_reward = 0
    while True:
        try:

            status = p.get_status()
            for s in status.keys():
                for i in range(status.get(s, 0)):
                    ob = env.reset()
                    reward_sum = 0
                    while True:
                        action = p.run(s, i, ob)
                        ob, reward, done, info = env.step(np.argmax(action))
                        reward_sum = reward_sum + reward
                        if done:
                            break
                    p.set_score(s, i, reward_sum)
                    max_reward = np.max([reward_sum, max_reward])

            print(p.generation, max_reward, p.population.keys())
            p.evolve()

        except KeyboardInterrupt as e:

            try:
                print('\nsaving before exit')
                p.save(FULLNAME)
                sys.exit('Bye!')
            except RuntimeError as e:
                print('error saving: {}'.format(str(e)))
Exemple #23
0
import sys
sys.path.insert(0, 'H:\\Documents\\Coding_projects')
sys.path.insert(1, 'H:\\Documents\\Coding_projects\\neat')

from neat import Population
from neat import Network
from neat import DataConf
import csv
import pygame

pop = Population(1000, 3, 1, False)
nets = pop.get_pop()
iterations = 100
pygame.init()

win = pygame.display.set_mode((500,500))

data_handler = DataConf(win)



with open('H:\\Documents\\Coding_projects\\xor\\data\\scores.csv', mode='w') as csv_file:
	csv_file = csv.writer(csv_file)
	csv_file.writerow(["Score"])

for i in range(iterations):
	fitness_tot = []
	for n in nets:
		answer = n.feed_forward([0, 0, 1])[0]
		n.fitness += abs(0 - answer)
		answer = n.feed_forward([1, 0, 1])[0]