def ast(self): return ast.Call(ast.Name('def_group_metric'), ast.Constant(self.name), ast.Raw(self.expression), ast.Name('entropy_disc'), (ast.Name('type'), ast.Constant(self.method)), print_hint='long')
def ast_for_dbi_call(self, call_name, *call_args): """ Returns a Call to an R function supporting the DBI connections parameters. """ if self.dialect == 'db2': args = [ (ast.Name(self.conn)), (ast.Name('.connection_string'), ast.Constant(self.DB2_connection_str())), # (ast.Name('dsn'), ast.Constant(self.dsn)), # (ast.Name('driver'), ast.Constant(self.driver)), ] else: args = [ ast.Call(ast.Name('dbDriver'), ast.Constant(R_DBI_DRIVERS[self.dialect])) ] args += call_args args += [(ast.Name('dbname'), ast.Constant(self.database))] # if self.dialect != 'sqlite': # args += [(ast.Name('user'), ast.Constant(self.username)), # (ast.Name('password'), ast.Constant(self.password)), # (ast.Name('host'), ast.Constant(self.host)), ] return ast.Call(call_name, args, libraries=['DBI', R_DBI_LIBRARIES[self.dialect]])
def _ast_impl(self): top = self.top_percent if self.is_percent else self.top_count return [ ast.Name('composite.pca'), (ast.Name('top'), ast.Constant(top)), (ast.Name('percent'), ast.Constant(self.is_percent)) ]
def _ast_impl(self): args = [ast.Raw(self.numerator), ast.Raw(self.denominator)] if self.cap_below: args += [(ast.Name('min'), ast.Constant(self.cap_below_at))] if self.cap_below_at != self.cap_below_with: args += [(ast.Name('min_to'), ast.Constant(self.cap_below_with))] if self.cap_above: args += [(ast.Name('max'), ast.Constant(self.cap_above_at))] if self.cap_above_at != self.cap_above_with: args += [(ast.Name('max_to'), ast.Constant(self.cap_above_with))] if self.replace_zero: args += [(ast.Name('zero_to'), ast.Constant(self.replace_zero_with))] if self.replace_inf: args += [(ast.Name('inf_to'), ast.Constant(self.replace_inf_with))] if self.replace_na: args += [(ast.Name('na_to'), ast.Constant(self.replace_na_with))] node = ast.Call(ast.Name('ratio'), args) if self.log_transform: node = ast.Call(ast.Name('safe_log1p'), node) return node
def ast(self): R_funcs = { 'chi_square': 'chisq_test', 'ks': 'ks.stat', 'custom': self.custom_function, } return ast.Call(ast.Name('def_group_metric'), ast.Constant(self.name), ast.Raw(self.expression), ast.Name(R_funcs[self.kind]), print_hint='long')
def ast(self): """ Generate the AST for a complete R program executing the model. """ # Build program body. prog = self._ast_impl() # Extract required libraries and load them first. libs = ast_transform.find_libraries(prog) lib_block = ast.Block( [ast.Call(ast.Name('library'), ast.Name(lib)) for lib in libs]) prog.value.insert(0, lib_block) return prog
def _ast_impl(self): args = [ast.Raw(self.expression)] if self.auto_breaks: arg_breaks = ast.Constant(self.num_breaks) else: arg_breaks = ast_macros.seq_to_vector(self.breaks) args.append((ast.Name('breaks'), arg_breaks)) if self.labels: args.append( (ast.Name('labels'), ast_macros.seq_to_vector(self.labels))) if self.closed_on_left: # By default, R closes on the right. args.append((ast.Name('right'), ast.Constant(False))) return ast.Call(ast.Name('cut'), args, print_hint='long')
def _write_constant(node, out, indent): value = node.value if isinstance(value, bool): out.write('TRUE' if value else 'FALSE') elif isinstance(value, float) and math.isinf(value): out.write('Inf' if value > 0 else '-Inf') elif isinstance(value, float) and math.isnan(value): # Follow Pandas in using NaN to represent missing data. out.write('NA') elif isinstance(value, complex): new_node = ast.Call(ast.Name('complex'), (ast.Name('real'), ast.Constant(value.real)), (ast.Name('imaginary'), ast.Constant(value.imag))) _write_ast(new_node, out, indent) elif isinstance(value, unicode): out.write(repr(value.encode('ascii'))) else: out.write(repr(value))
def _ast_impl(self): self.model.store_input = True nodes = [self.model.ast()] if self.input_source: run_args = self.input_source.ast() if isinstance(run_args, ast.Node): run_args = [(ast.Name('input'), run_args)] if self.output_source: conn = self.output_source.ast_for_dbi_call( ast.Name('dbConnect')) run_args += [ (ast.Name('output'), conn), (ast.Name('store_input'), ast.Constant(self.model.store_input)), ] run_nodes = [ ast.Call(ast.Name('run_model'), run_args, print_hint='long'), ] nodes += [ ast.Comment('Execute model'), ast.Block(run_nodes), ] return ast.Block(nodes, print_hint='long')
def ast(self, path): return ast.Call(ast.Name('read.xlsx'), ast.Constant(path), ast.Constant(1), # Sheet index libraries=['xlsx'])
def ast(self): return ast.Call(ast.Name('def_group_metric'), ast.Constant(self.name), ast.Raw(self.expression), ast.Name('graph_density'), print_hint='long')
def ast(self): return ast.Call(ast.Name('def_group_metric'), ast.Constant(self.name), ast.Raw(self.expression), ast.Name('uniq_cont'), print_hint='long')
def ast(self): conn = self.ast_for_dbi_call(ast.Name('dbConnect')) print('ast') if self.dialect == 'mssql': return [ (ast.Name('ConnStr'), ast.Constant(self.sql_connection_str())), (ast.Name('input_table'), ast.Constant(self.query_table())), (ast.Name('MSSQL'), ast.Constant(1)) ] elif self.dialect == 'sqlite': return [(ast.Name('sqlitepath'), ast.Constant(self.database)), (ast.Name('input_table'), ast.Constant(self.query_table())), (ast.Name('Sqlite'), ast.Constant(1))] elif self.dialect == 'db2': return [ (ast.Name('ConnStr'), ast.Constant(self.DB2_connection_str())), (ast.Name('input_table'), ast.Constant(self.query_table())), (ast.Name('db2'), ast.Constant(1)) ] else: return [(ast.Name('input'), conn), (ast.Name('input_table'), ast.Constant(self.table)), (ast.Name('MSSQL'), ast.Constant(0)), (ast.Name('Sqlite'), ast.Constant(0)), (ast.Name('db2'), ast.Constant(0))]
def _ast_impl(self): terms = [ ast_macros.Product(ast.Constant(term.coeff), ast.Name(term.metric.name)) for term in self.terms if term.coeff != 0 ] return ast_macros.Sum(terms)