Exemple #1
0
class MTEncDecModel(EncDecNLPModel):
    """
    Encoder-decoder machine translation model.
    """
    def __init__(self, cfg: MTEncDecModelConfig, trainer: Trainer = None):
        cfg = model_utils.convert_model_config_to_dict_config(cfg)
        # Get global rank and total number of GPU workers for IterableDataset partitioning, if applicable
        # Global_rank and local_rank is set by LightningModule in Lightning 1.2.0

        self.world_size = 1
        if trainer is not None:
            self.world_size = trainer.num_nodes * trainer.num_gpus

        cfg = model_utils.maybe_update_config_version(cfg)

        self.src_language: str = cfg.get("src_language", None)
        self.tgt_language: str = cfg.get("tgt_language", None)

        # Instantiates tokenizers and register to be saved with NeMo Model archive
        # After this call, ther will be self.encoder_tokenizer and self.decoder_tokenizer
        # Which can convert between tokens and token_ids for SRC and TGT languages correspondingly.
        self.setup_enc_dec_tokenizers(
            encoder_tokenizer_name=cfg.encoder_tokenizer.tokenizer_name,
            encoder_tokenizer_model=cfg.encoder_tokenizer.tokenizer_model,
            encoder_bpe_dropout=cfg.encoder_tokenizer.get('bpe_dropout', 0.0),
            decoder_tokenizer_name=cfg.decoder_tokenizer.tokenizer_name,
            decoder_tokenizer_model=cfg.decoder_tokenizer.tokenizer_model,
            decoder_bpe_dropout=cfg.decoder_tokenizer.get('bpe_dropout', 0.0),
        )

        # After this call, the model will have  self.source_processor and self.target_processor objects
        self.setup_pre_and_post_processing_utils(source_lang=self.src_language,
                                                 target_lang=self.tgt_language)

        # TODO: Why is this base constructor call so late in the game?
        super().__init__(cfg=cfg, trainer=trainer)

        # TODO: use get_encoder function with support for HF and Megatron
        self.encoder = TransformerEncoderNM(
            vocab_size=self.encoder_vocab_size,
            hidden_size=cfg.encoder.hidden_size,
            num_layers=cfg.encoder.num_layers,
            inner_size=cfg.encoder.inner_size,
            max_sequence_length=cfg.encoder.max_sequence_length if hasattr(
                cfg.encoder, 'max_sequence_length') else 512,
            embedding_dropout=cfg.encoder.embedding_dropout if hasattr(
                cfg.encoder, 'embedding_dropout') else 0.0,
            learn_positional_encodings=cfg.encoder.learn_positional_encodings
            if hasattr(cfg.encoder, 'learn_positional_encodings') else False,
            num_attention_heads=cfg.encoder.num_attention_heads,
            ffn_dropout=cfg.encoder.ffn_dropout,
            attn_score_dropout=cfg.encoder.attn_score_dropout,
            attn_layer_dropout=cfg.encoder.attn_layer_dropout,
            hidden_act=cfg.encoder.hidden_act,
            mask_future=cfg.encoder.mask_future,
            pre_ln=cfg.encoder.pre_ln,
        )

        # TODO: user get_decoder function with support for HF and Megatron
        self.decoder = TransformerDecoderNM(
            vocab_size=self.decoder_vocab_size,
            hidden_size=cfg.decoder.hidden_size,
            num_layers=cfg.decoder.num_layers,
            inner_size=cfg.decoder.inner_size,
            max_sequence_length=cfg.decoder.max_sequence_length if hasattr(
                cfg.decoder, 'max_sequence_length') else 512,
            embedding_dropout=cfg.decoder.embedding_dropout if hasattr(
                cfg.decoder, 'embedding_dropout') else 0.0,
            learn_positional_encodings=cfg.decoder.learn_positional_encodings
            if hasattr(cfg.decoder, 'learn_positional_encodings') else False,
            num_attention_heads=cfg.decoder.num_attention_heads,
            ffn_dropout=cfg.decoder.ffn_dropout,
            attn_score_dropout=cfg.decoder.attn_score_dropout,
            attn_layer_dropout=cfg.decoder.attn_layer_dropout,
            hidden_act=cfg.decoder.hidden_act,
            pre_ln=cfg.decoder.pre_ln,
        )

        self.log_softmax = TokenClassifier(
            hidden_size=self.decoder.hidden_size,
            num_classes=self.decoder_vocab_size,
            activation=cfg.head.activation,
            log_softmax=cfg.head.log_softmax,
            dropout=cfg.head.dropout,
            use_transformer_init=cfg.head.use_transformer_init,
        )

        self.beam_search = BeamSearchSequenceGenerator(
            embedding=self.decoder.embedding,
            decoder=self.decoder.decoder,
            log_softmax=self.log_softmax,
            max_sequence_length=self.decoder.max_sequence_length,
            beam_size=cfg.beam_size,
            bos=self.decoder_tokenizer.bos_id,
            pad=self.decoder_tokenizer.pad_id,
            eos=self.decoder_tokenizer.eos_id,
            len_pen=cfg.len_pen,
            max_delta_length=cfg.max_generation_delta,
        )

        # tie weights of embedding and softmax matrices
        self.log_softmax.mlp.layer0.weight = self.decoder.embedding.token_embedding.weight

        # TODO: encoder and decoder with different hidden size?
        std_init_range = 1 / self.encoder.hidden_size**0.5
        self.apply(
            lambda module: transformer_weights_init(module, std_init_range))

        self.loss_fn = SmoothedCrossEntropyLoss(
            pad_id=self.decoder_tokenizer.pad_id,
            label_smoothing=cfg.label_smoothing)
        self.eval_loss = GlobalAverageLossMetric(dist_sync_on_step=False,
                                                 take_avg_loss=True)

    def filter_predicted_ids(self, ids):
        ids[ids >=
            self.decoder_tokenizer.vocab_size] = self.decoder_tokenizer.unk_id
        return ids

    @typecheck()
    def forward(self, src, src_mask, tgt, tgt_mask):
        src_hiddens = self.encoder(src, src_mask)
        tgt_hiddens = self.decoder(tgt, tgt_mask, src_hiddens, src_mask)
        log_probs = self.log_softmax(hidden_states=tgt_hiddens)
        return log_probs

    def training_step(self, batch, batch_idx):
        """
        Lightning calls this inside the training loop with the data from the training dataloader
        passed in as `batch`.
        """
        # forward pass
        for i in range(len(batch)):
            if batch[i].ndim == 3:
                # Dataset returns already batched data and the first dimension of size 1 added by DataLoader
                # is excess.
                batch[i] = batch[i].squeeze(dim=0)
        src_ids, src_mask, tgt_ids, tgt_mask, labels = batch
        log_probs = self(src_ids, src_mask, tgt_ids, tgt_mask)
        train_loss = self.loss_fn(log_probs=log_probs, labels=labels)
        tensorboard_logs = {
            'train_loss': train_loss,
            'lr': self._optimizer.param_groups[0]['lr'],
        }
        return {'loss': train_loss, 'log': tensorboard_logs}

    def eval_step(self, batch, batch_idx, mode):
        for i in range(len(batch)):
            if batch[i].ndim == 3:
                # Dataset returns already batched data and the first dimension of size 1 added by DataLoader
                # is excess.
                batch[i] = batch[i].squeeze(dim=0)
        src_ids, src_mask, tgt_ids, tgt_mask, labels = batch
        log_probs = self(src_ids, src_mask, tgt_ids, tgt_mask)

        # this will run encoder twice -- TODO: potentially fix
        _, translations = self.batch_translate(src=src_ids, src_mask=src_mask)
        eval_loss = self.loss_fn(log_probs=log_probs, labels=labels)
        self.eval_loss(loss=eval_loss,
                       num_measurements=log_probs.shape[0] *
                       log_probs.shape[1])
        np_tgt = tgt_ids.cpu().numpy()
        ground_truths = [
            self.decoder_tokenizer.ids_to_text(tgt) for tgt in np_tgt
        ]
        ground_truths = [
            self.target_processor.detokenize(tgt.split(' '))
            for tgt in ground_truths
        ]
        num_non_pad_tokens = np.not_equal(
            np_tgt, self.decoder_tokenizer.pad_id).sum().item()
        return {
            'translations': translations,
            'ground_truths': ground_truths,
            'num_non_pad_tokens': num_non_pad_tokens,
        }

    def test_step(self, batch, batch_idx):
        return self.eval_step(batch, batch_idx, 'test')

    @rank_zero_only
    def log_param_stats(self):
        for name, p in self.named_parameters():
            if p.requires_grad:
                self.trainer.logger.experiment.add_histogram(
                    name + '_hist', p, global_step=self.global_step)
                self.trainer.logger.experiment.add_scalars(
                    name,
                    {
                        'mean': p.mean(),
                        'stddev': p.std(),
                        'max': p.max(),
                        'min': p.min()
                    },
                    global_step=self.global_step,
                )

    def validation_step(self, batch, batch_idx):
        """
        Lightning calls this inside the validation loop with the data from the validation dataloader
        passed in as `batch`.
        """
        return self.eval_step(batch, batch_idx, 'val')

    def eval_epoch_end(self, outputs, mode):
        eval_loss = self.eval_loss.compute()
        translations = list(
            itertools.chain(*[x['translations'] for x in outputs]))
        ground_truths = list(
            itertools.chain(*[x['ground_truths'] for x in outputs]))

        assert len(translations) == len(ground_truths)
        if self.tgt_language in ['ja']:
            sacre_bleu = corpus_bleu(translations, [ground_truths],
                                     tokenize="ja-mecab")
        elif self.tgt_language in ['zh']:
            sacre_bleu = corpus_bleu(translations, [ground_truths],
                                     tokenize="zh")
        else:
            sacre_bleu = corpus_bleu(translations, [ground_truths],
                                     tokenize="13a")

        dataset_name = "Validation" if mode == 'val' else "Test"
        logging.info(f"\n\n\n\n{dataset_name} set size: {len(translations)}")
        logging.info(f"{dataset_name} Sacre BLEU = {sacre_bleu.score}")
        logging.info(f"{dataset_name} TRANSLATION EXAMPLES:".upper())
        for i in range(0, 3):
            ind = random.randint(0, len(translations) - 1)
            logging.info("    " + '\u0332'.join(f"EXAMPLE {i}:"))
            logging.info(f"    Prediction:   {translations[ind]}")
            logging.info(f"    Ground Truth: {ground_truths[ind]}")

        ans = {
            f"{mode}_loss": eval_loss,
            f"{mode}_sacreBLEU": sacre_bleu.score
        }
        ans['log'] = dict(ans)
        return ans

    def validation_epoch_end(self, outputs):
        """
        Called at the end of validation to aggregate outputs.
        :param outputs: list of individual outputs of each validation step.
        """
        self.log_dict(self.eval_epoch_end(outputs, 'val'))

    def test_epoch_end(self, outputs):
        return self.eval_epoch_end(outputs, 'test')

    def setup_training_data(self, train_data_config: Optional[DictConfig]):
        self._train_dl = self._setup_dataloader_from_config(
            cfg=train_data_config)

    def setup_validation_data(self, val_data_config: Optional[DictConfig]):
        self._validation_dl = self._setup_dataloader_from_config(
            cfg=val_data_config)

    def setup_test_data(self, test_data_config: Optional[DictConfig]):
        self._test_dl = self._setup_dataloader_from_config(
            cfg=test_data_config)

    def _setup_dataloader_from_config(self, cfg: DictConfig):
        if cfg.get("load_from_cached_dataset", False):
            logging.info('Loading from cached dataset %s' %
                         (cfg.src_file_name))
            if cfg.src_file_name != cfg.tgt_file_name:
                raise ValueError(
                    "src must be equal to target for cached dataset")
            dataset = pickle.load(open(cfg.src_file_name, 'rb'))
            dataset.reverse_lang_direction = cfg.get("reverse_lang_direction",
                                                     False)
        elif cfg.get("use_tarred_dataset", False):
            if cfg.get('tar_files') is None:
                raise FileNotFoundError("Could not find tarred dataset.")
            logging.info(f'Loading from tarred dataset {cfg.get("tar_files")}')
            if cfg.get("metadata_file", None) is None:
                raise FileNotFoundError(
                    "Could not find metadata path in config")
            dataset = TarredTranslationDataset(
                text_tar_filepaths=cfg.tar_files,
                metadata_path=cfg.metadata_file,
                encoder_tokenizer=self.encoder_tokenizer,
                decoder_tokenizer=self.decoder_tokenizer,
                shuffle_n=cfg.get("tar_shuffle_n", 100),
                shard_strategy=cfg.get("shard_strategy", "scatter"),
                global_rank=self.global_rank,
                world_size=self.world_size,
                reverse_lang_direction=cfg.get("reverse_lang_direction",
                                               False),
            )
            return torch.utils.data.DataLoader(
                dataset=dataset,
                batch_size=1,
                num_workers=cfg.get("num_workers", 2),
                pin_memory=cfg.get("pin_memory", False),
                drop_last=cfg.get("drop_last", False),
            )
        else:
            dataset = TranslationDataset(
                dataset_src=str(Path(cfg.src_file_name).expanduser()),
                dataset_tgt=str(Path(cfg.tgt_file_name).expanduser()),
                tokens_in_batch=cfg.tokens_in_batch,
                clean=cfg.get("clean", False),
                max_seq_length=cfg.get("max_seq_length", 512),
                min_seq_length=cfg.get("min_seq_length", 1),
                max_seq_length_diff=cfg.get("max_seq_length_diff", 512),
                max_seq_length_ratio=cfg.get("max_seq_length_ratio", 512),
                cache_ids=cfg.get("cache_ids", False),
                cache_data_per_node=cfg.get("cache_data_per_node", False),
                use_cache=cfg.get("use_cache", False),
                reverse_lang_direction=cfg.get("reverse_lang_direction",
                                               False),
            )
            dataset.batchify(self.encoder_tokenizer, self.decoder_tokenizer)
        if cfg.shuffle:
            sampler = pt_data.RandomSampler(dataset)
        else:
            sampler = pt_data.SequentialSampler(dataset)
        return torch.utils.data.DataLoader(
            dataset=dataset,
            batch_size=1,
            sampler=sampler,
            num_workers=cfg.get("num_workers", 2),
            pin_memory=cfg.get("pin_memory", False),
            drop_last=cfg.get("drop_last", False),
        )

    def setup_pre_and_post_processing_utils(self, source_lang, target_lang):
        """
        Creates source and target processor objects for input and output pre/post-processing.
        """
        self.source_processor, self.target_processor = None, None
        if (source_lang == 'en'
                and target_lang == 'ja') or (source_lang == 'ja'
                                             and target_lang == 'en'):
            self.source_processor = EnJaProcessor(source_lang)
            self.target_processor = EnJaProcessor(target_lang)
        else:
            if source_lang == 'zh':
                self.source_processor = ChineseProcessor()
            if target_lang == 'zh':
                self.target_processor = ChineseProcessor()
            if source_lang is not None and source_lang not in ['ja', 'zh']:
                self.source_processor = MosesProcessor(source_lang)
            if target_lang is not None and target_lang not in ['ja', 'zh']:
                self.target_processor = MosesProcessor(target_lang)

    @torch.no_grad()
    def batch_translate(
        self,
        src: torch.LongTensor,
        src_mask: torch.LongTensor,
    ):
        """	
        Translates a minibatch of inputs from source language to target language.	
        Args:	
            src: minibatch of inputs in the src language (batch x seq_len)	
            src_mask: mask tensor indicating elements to be ignored (batch x seq_len)	
        Returns:	
            translations: a list strings containing detokenized translations	
            inputs: a list of string containing detokenized inputs	
        """
        mode = self.training
        try:
            self.eval()

            src_hiddens = self.encoder(input_ids=src, encoder_mask=src_mask)
            beam_results = self.beam_search(encoder_hidden_states=src_hiddens,
                                            encoder_input_mask=src_mask)
            beam_results = self.filter_predicted_ids(beam_results)

            translations = [
                self.decoder_tokenizer.ids_to_text(tr)
                for tr in beam_results.cpu().numpy()
            ]
            inputs = [
                self.encoder_tokenizer.ids_to_text(inp)
                for inp in src.cpu().numpy()
            ]
            if self.target_processor is not None:
                translations = [
                    self.target_processor.detokenize(translation.split(' '))
                    for translation in translations
                ]

            if self.source_processor is not None:
                inputs = [
                    self.source_processor.detokenize(item.split(' '))
                    for item in inputs
                ]

        finally:
            self.train(mode=mode)
        return inputs, translations

    # TODO: We should drop source/target_lang arguments in favor of using self.src/tgt_language
    @torch.no_grad()
    def translate(self,
                  text: List[str],
                  source_lang: str = None,
                  target_lang: str = None) -> List[str]:
        """
        Translates list of sentences from source language to target language.
        Should be regular text, this method performs its own tokenization/de-tokenization
        Args:
            text: list of strings to translate
            source_lang: if not None, corresponding MosesTokenizer and MosesPunctNormalizer will be run
            target_lang: if not None, corresponding MosesDecokenizer will be run
        Returns:
            list of translated strings
        """
        # __TODO__: This will reset both source and target processors even if you want to reset just one.
        if source_lang is not None or target_lang is not None:
            self.setup_pre_and_post_processing_utils(source_lang, target_lang)

        mode = self.training
        try:
            self.eval()
            inputs = []
            for txt in text:
                if self.source_processor is not None:
                    txt = self.source_processor.normalize(txt)
                    txt = self.source_processor.tokenize(txt)
                ids = self.encoder_tokenizer.text_to_ids(txt)
                ids = [self.encoder_tokenizer.bos_id
                       ] + ids + [self.encoder_tokenizer.eos_id]
                inputs.append(ids)
            max_len = max(len(txt) for txt in inputs)
            src_ids_ = np.ones(
                (len(inputs), max_len)) * self.encoder_tokenizer.pad_id
            for i, txt in enumerate(inputs):
                src_ids_[i][:len(txt)] = txt

            src_mask = torch.FloatTensor(
                (src_ids_ != self.encoder_tokenizer.pad_id)).to(self.device)
            src = torch.LongTensor(src_ids_).to(self.device)
            _, translations = self.batch_translate(src, src_mask)
        finally:
            self.train(mode=mode)
        return translations

    @classmethod
    def list_available_models(cls) -> Optional[Dict[str, str]]:
        pass
Exemple #2
0
class MTEncDecModel(EncDecNLPModel):
    """
    Encoder-decoder machine translation model.
    """

    def __init__(self, cfg: MTEncDecModelConfig, trainer: Trainer = None):
        cfg = model_utils.convert_model_config_to_dict_config(cfg)
        # Get global rank and total number of GPU workers for IterableDataset partitioning, if applicable
        # Global_rank and local_rank is set by LightningModule in Lightning 1.2.0

        self.world_size = 1
        if trainer is not None:
            self.world_size = trainer.num_nodes * trainer.num_gpus

        cfg = model_utils.maybe_update_config_version(cfg)

        self.src_language = cfg.get("src_language", None)
        self.tgt_language = cfg.get("tgt_language", None)

        self.multilingual = cfg.get("multilingual", False)
        self.multilingual_ids = []

        # Instantiates tokenizers and register to be saved with NeMo Model archive
        # After this call, ther will be self.encoder_tokenizer and self.decoder_tokenizer
        # Which can convert between tokens and token_ids for SRC and TGT languages correspondingly.
        self.setup_enc_dec_tokenizers(
            encoder_tokenizer_library=cfg.encoder_tokenizer.get('library', 'yttm'),
            encoder_tokenizer_model=cfg.encoder_tokenizer.get('tokenizer_model'),
            encoder_bpe_dropout=cfg.encoder_tokenizer.get('bpe_dropout', 0.0)
            if cfg.encoder_tokenizer.get('bpe_dropout', 0.0) is not None
            else 0.0,
            encoder_model_name=cfg.encoder.get('model_name') if hasattr(cfg.encoder, 'model_name') else None,
            decoder_tokenizer_library=cfg.decoder_tokenizer.get('library', 'yttm'),
            decoder_tokenizer_model=cfg.decoder_tokenizer.tokenizer_model,
            decoder_bpe_dropout=cfg.decoder_tokenizer.get('bpe_dropout', 0.0)
            if cfg.decoder_tokenizer.get('bpe_dropout', 0.0) is not None
            else 0.0,
            decoder_model_name=cfg.decoder.get('model_name') if hasattr(cfg.decoder, 'model_name') else None,
        )

        if self.multilingual:
            if isinstance(self.src_language, ListConfig) and isinstance(self.tgt_language, ListConfig):
                raise ValueError(
                    "cfg.src_language and cfg.tgt_language cannot both be lists. We only support many-to-one or one-to-many multilingual models."
                )
            elif isinstance(self.src_language, ListConfig):
                for lng in self.src_language:
                    self.multilingual_ids.append(self.encoder_tokenizer.token_to_id("<" + lng + ">"))
            elif isinstance(self.tgt_language, ListConfig):
                for lng in self.tgt_language:
                    self.multilingual_ids.append(self.encoder_tokenizer.token_to_id("<" + lng + ">"))
            else:
                raise ValueError(
                    "Expect either cfg.src_language or cfg.tgt_language to be a list when multilingual=True."
                )

            if isinstance(self.src_language, ListConfig):
                self.tgt_language = [self.tgt_language] * len(self.src_language)
            else:
                self.src_language = [self.src_language] * len(self.tgt_language)

            self.source_processor_list = []
            self.target_processor_list = []
            for src_lng, tgt_lng in zip(self.src_language, self.tgt_language):
                src_prcsr, tgt_prscr = self.setup_pre_and_post_processing_utils(
                    source_lang=src_lng, target_lang=tgt_lng
                )
                self.source_processor_list.append(src_prcsr)
                self.target_processor_list.append(tgt_prscr)

        else:
            # After this call, the model will have  self.source_processor and self.target_processor objects
            self.setup_pre_and_post_processing_utils(source_lang=self.src_language, target_lang=self.tgt_language)
            self.multilingual_ids = [None]

        # TODO: Why is this base constructor call so late in the game?
        super().__init__(cfg=cfg, trainer=trainer)

        # encoder from NeMo, Megatron-LM, or HuggingFace
        encoder_cfg_dict = OmegaConf.to_container(cfg.get('encoder'))
        encoder_cfg_dict['vocab_size'] = self.encoder_vocab_size
        library = encoder_cfg_dict.pop('library', 'nemo')
        model_name = encoder_cfg_dict.pop('model_name', None)
        pretrained = encoder_cfg_dict.pop('pretrained', False)
        checkpoint_file = encoder_cfg_dict.pop('checkpoint_file', None)
        self.encoder = get_transformer(
            library=library,
            model_name=model_name,
            pretrained=pretrained,
            config_dict=encoder_cfg_dict,
            encoder=True,
            pre_ln_final_layer_norm=encoder_cfg_dict.get('pre_ln_final_layer_norm', False),
            checkpoint_file=checkpoint_file,
        )

        # decoder from NeMo, Megatron-LM, or HuggingFace
        decoder_cfg_dict = OmegaConf.to_container(cfg.get('decoder'))
        decoder_cfg_dict['vocab_size'] = self.decoder_vocab_size
        library = decoder_cfg_dict.pop('library', 'nemo')
        model_name = decoder_cfg_dict.pop('model_name', None)
        pretrained = decoder_cfg_dict.pop('pretrained', False)
        decoder_cfg_dict['hidden_size'] = self.encoder.hidden_size
        self.decoder = get_transformer(
            library=library,
            model_name=model_name,
            pretrained=pretrained,
            config_dict=decoder_cfg_dict,
            encoder=False,
            pre_ln_final_layer_norm=decoder_cfg_dict.get('pre_ln_final_layer_norm', False),
        )

        self.log_softmax = TokenClassifier(
            hidden_size=self.decoder.hidden_size,
            num_classes=self.decoder_vocab_size,
            activation=cfg.head.activation,
            log_softmax=cfg.head.log_softmax,
            dropout=cfg.head.dropout,
            use_transformer_init=cfg.head.use_transformer_init,
        )

        self.beam_search = BeamSearchSequenceGenerator(
            embedding=self.decoder.embedding,
            decoder=self.decoder.decoder,
            log_softmax=self.log_softmax,
            max_sequence_length=self.decoder.max_sequence_length,
            beam_size=cfg.beam_size,
            bos=self.decoder_tokenizer.bos_id,
            pad=self.decoder_tokenizer.pad_id,
            eos=self.decoder_tokenizer.eos_id,
            len_pen=cfg.len_pen,
            max_delta_length=cfg.max_generation_delta,
        )

        # tie weights of embedding and softmax matrices
        self.log_softmax.mlp.layer0.weight = self.decoder.embedding.token_embedding.weight

        # TODO: encoder and decoder with different hidden size?
        std_init_range = 1 / self.encoder.hidden_size ** 0.5

        # initialize weights if not using pretrained encoder/decoder
        if not self._cfg.encoder.get('pretrained', False):
            self.encoder.apply(lambda module: transformer_weights_init(module, std_init_range))

        if not self._cfg.decoder.get('pretrained', False):
            self.decoder.apply(lambda module: transformer_weights_init(module, std_init_range))

        self.log_softmax.apply(lambda module: transformer_weights_init(module, std_init_range))

        self.loss_fn = SmoothedCrossEntropyLoss(
            pad_id=self.decoder_tokenizer.pad_id, label_smoothing=cfg.label_smoothing
        )
        self.eval_loss_fn = NLLLoss(ignore_index=self.decoder_tokenizer.pad_id)

    def filter_predicted_ids(self, ids):
        ids[ids >= self.decoder_tokenizer.vocab_size] = self.decoder_tokenizer.unk_id
        return ids

    @typecheck()
    def forward(self, src, src_mask, tgt, tgt_mask):
        src_hiddens = self.encoder(input_ids=src, encoder_mask=src_mask)
        tgt_hiddens = self.decoder(
            input_ids=tgt, decoder_mask=tgt_mask, encoder_embeddings=src_hiddens, encoder_mask=src_mask
        )
        log_probs = self.log_softmax(hidden_states=tgt_hiddens)
        return log_probs

    def training_step(self, batch, batch_idx):
        """
        Lightning calls this inside the training loop with the data from the training dataloader
        passed in as `batch`.
        """
        # forward pass
        for i in range(len(batch)):
            if batch[i].ndim == 3:
                # Dataset returns already batched data and the first dimension of size 1 added by DataLoader
                # is excess.
                batch[i] = batch[i].squeeze(dim=0)
        src_ids, src_mask, tgt_ids, tgt_mask, labels = batch
        log_probs = self(src_ids, src_mask, tgt_ids, tgt_mask)
        train_loss = self.loss_fn(log_probs=log_probs, labels=labels)
        tensorboard_logs = {
            'train_loss': train_loss,
            'lr': self._optimizer.param_groups[0]['lr'],
        }
        return {'loss': train_loss, 'log': tensorboard_logs}

    def eval_step(self, batch, batch_idx, mode, dataloader_idx=0):
        for i in range(len(batch)):
            if batch[i].ndim == 3:
                # Dataset returns already batched data and the first dimension of size 1 added by DataLoader
                # is excess.
                batch[i] = batch[i].squeeze(dim=0)

        if self.multilingual:
            self.source_processor = self.source_processor_list[dataloader_idx]
            self.target_processor = self.target_processor_list[dataloader_idx]

        src_ids, src_mask, tgt_ids, tgt_mask, labels = batch
        log_probs = self(src_ids, src_mask, tgt_ids, tgt_mask)
        eval_loss = self.eval_loss_fn(log_probs=log_probs, labels=labels)
        # this will run encoder twice -- TODO: potentially fix
        _, translations = self.batch_translate(src=src_ids, src_mask=src_mask)
        if dataloader_idx == 0:
            getattr(self, f'{mode}_loss')(loss=eval_loss, num_measurements=log_probs.shape[0] * log_probs.shape[1])
        else:
            getattr(self, f'{mode}_loss_{dataloader_idx}')(
                loss=eval_loss, num_measurements=log_probs.shape[0] * log_probs.shape[1]
            )
        np_tgt = tgt_ids.detach().cpu().numpy()
        ground_truths = [self.decoder_tokenizer.ids_to_text(tgt) for tgt in np_tgt]
        ground_truths = [self.target_processor.detokenize(tgt.split(' ')) for tgt in ground_truths]
        num_non_pad_tokens = np.not_equal(np_tgt, self.decoder_tokenizer.pad_id).sum().item()
        return {
            'translations': translations,
            'ground_truths': ground_truths,
            'num_non_pad_tokens': num_non_pad_tokens,
        }

    def test_step(self, batch, batch_idx, dataloader_idx=0):
        return self.eval_step(batch, batch_idx, 'test', dataloader_idx)

    @rank_zero_only
    def log_param_stats(self):
        for name, p in self.named_parameters():
            if p.requires_grad:
                self.trainer.logger.experiment.add_histogram(name + '_hist', p, global_step=self.global_step)
                self.trainer.logger.experiment.add_scalars(
                    name,
                    {'mean': p.mean(), 'stddev': p.std(), 'max': p.max(), 'min': p.min()},
                    global_step=self.global_step,
                )

    def validation_step(self, batch, batch_idx, dataloader_idx=0):
        """
        Lightning calls this inside the validation loop with the data from the validation dataloader
        passed in as `batch`.
        """
        return self.eval_step(batch, batch_idx, 'val', dataloader_idx)

    def eval_epoch_end(self, outputs, mode):
        # if user specifies one validation dataloader, then PTL reverts to giving a list of dictionary instead of a list of list of dictionary
        if isinstance(outputs[0], dict):
            outputs = [outputs]

        loss_list = []
        sb_score_list = []
        for dataloader_idx, output in enumerate(outputs):
            if dataloader_idx == 0:
                eval_loss = getattr(self, f'{mode}_loss').compute()
            else:
                eval_loss = getattr(self, f'{mode}_loss_{dataloader_idx}').compute()

            translations = list(itertools.chain(*[x['translations'] for x in output]))
            ground_truths = list(itertools.chain(*[x['ground_truths'] for x in output]))
            assert len(translations) == len(ground_truths)

            # Gather translations and ground truths from all workers
            tr_and_gt = [None for _ in range(self.world_size)]
            # we also need to drop pairs where ground truth is an empty string
            dist.all_gather_object(
                tr_and_gt, [(t, g) for (t, g) in zip(translations, ground_truths) if g.strip() != '']
            )
            if self.global_rank == 0:
                _translations = []
                _ground_truths = []
                for rank in range(0, self.world_size):
                    _translations += [t for (t, g) in tr_and_gt[rank]]
                    _ground_truths += [g for (t, g) in tr_and_gt[rank]]

                if self.tgt_language in ['ja']:
                    sacre_bleu = corpus_bleu(_translations, [_ground_truths], tokenize="ja-mecab")
                elif self.tgt_language in ['zh']:
                    sacre_bleu = corpus_bleu(_translations, [_ground_truths], tokenize="zh")
                else:
                    sacre_bleu = corpus_bleu(_translations, [_ground_truths], tokenize="13a")

                # because the reduction op later is average (over word_size)
                sb_score = sacre_bleu.score * self.world_size

                dataset_name = "Validation" if mode == 'val' else "Test"
                logging.info(
                    f"Dataset name: {dataset_name}, Dataloader index: {dataloader_idx}, Set size: {len(translations)}"
                )
                logging.info(
                    f"Dataset name: {dataset_name}, Dataloader index: {dataloader_idx}, Val Loss = {eval_loss}"
                )
                logging.info(
                    f"Dataset name: {dataset_name}, Dataloader index: {dataloader_idx}, Sacre BLEU = {sb_score / self.world_size}"
                )
                logging.info(
                    f"Dataset name: {dataset_name}, Dataloader index: {dataloader_idx}, Translation Examples:"
                )
                for i in range(0, 3):
                    ind = random.randint(0, len(translations) - 1)
                    logging.info("    " + '\u0332'.join(f"Example {i}:"))
                    logging.info(f"    Prediction:   {translations[ind]}")
                    logging.info(f"    Ground Truth: {ground_truths[ind]}")
            else:
                sb_score = 0.0

            loss_list.append(eval_loss.cpu().numpy())
            sb_score_list.append(sb_score)
            if dataloader_idx == 0:
                self.log(f"{mode}_loss", eval_loss, sync_dist=True)
                self.log(f"{mode}_sacreBLEU", sb_score, sync_dist=True)
                getattr(self, f'{mode}_loss').reset()
            else:
                self.log(f"{mode}_loss_dl_index_{dataloader_idx}", eval_loss, sync_dist=True)
                self.log(f"{mode}_sacreBLEU_dl_index_{dataloader_idx}", sb_score, sync_dist=True)
                getattr(self, f'{mode}_loss_{dataloader_idx}').reset()

        if len(loss_list) > 1:
            self.log(f"{mode}_loss_avg", np.mean(loss_list), sync_dist=True)
            self.log(f"{mode}_sacreBLEU_avg", np.mean(sb_score_list), sync_dist=True)

    def validation_epoch_end(self, outputs):
        """
        Called at the end of validation to aggregate outputs.
        :param outputs: list of individual outputs of each validation step.
        """
        self.eval_epoch_end(outputs, 'val')

    def test_epoch_end(self, outputs):
        self.eval_epoch_end(outputs, 'test')

    def setup_enc_dec_tokenizers(
        self,
        encoder_tokenizer_library=None,
        encoder_tokenizer_model=None,
        encoder_bpe_dropout=0.0,
        encoder_model_name=None,
        decoder_tokenizer_library=None,
        decoder_tokenizer_model=None,
        decoder_bpe_dropout=0.0,
        decoder_model_name=None,
    ):

        supported_tokenizers = ['yttm', 'huggingface', 'sentencepiece', 'megatron']
        if (
            encoder_tokenizer_library not in supported_tokenizers
            or decoder_tokenizer_library not in supported_tokenizers
        ):
            raise NotImplementedError(f"Currently we only support tokenizers in {supported_tokenizers}.")

        self.encoder_tokenizer = get_nmt_tokenizer(
            library=encoder_tokenizer_library,
            tokenizer_model=self.register_artifact("encoder_tokenizer.tokenizer_model", encoder_tokenizer_model),
            bpe_dropout=encoder_bpe_dropout,
            model_name=encoder_model_name,
            vocab_file=None,
            special_tokens=None,
            use_fast=False,
        )
        self.decoder_tokenizer = get_nmt_tokenizer(
            library=decoder_tokenizer_library,
            tokenizer_model=self.register_artifact("decoder_tokenizer.tokenizer_model", decoder_tokenizer_model),
            bpe_dropout=decoder_bpe_dropout,
            model_name=decoder_model_name,
            vocab_file=None,
            special_tokens=None,
            use_fast=False,
        )

    def setup_training_data(self, train_data_config: Optional[DictConfig]):
        self._train_dl = self._setup_dataloader_from_config(cfg=train_data_config)

    def setup_multiple_validation_data(self, val_data_config: Union[DictConfig, Dict]):
        self.setup_validation_data(self._cfg.get('validation_ds'))

    def setup_multiple_test_data(self, test_data_config: Union[DictConfig, Dict]):
        self.setup_test_data(self._cfg.get('test_ds'))

    def setup_validation_data(self, val_data_config: Optional[DictConfig]):
        self._validation_dl = self._setup_eval_dataloader_from_config(cfg=val_data_config)
        # instantiate Torchmetric for each val dataloader
        if self._validation_dl is not None:
            for dataloader_idx in range(len(self._validation_dl)):
                if dataloader_idx == 0:
                    setattr(
                        self, f'val_loss', GlobalAverageLossMetric(dist_sync_on_step=False, take_avg_loss=True),
                    )
                else:
                    setattr(
                        self,
                        f'val_loss_{dataloader_idx}',
                        GlobalAverageLossMetric(dist_sync_on_step=False, take_avg_loss=True),
                    )

    def setup_test_data(self, test_data_config: Optional[DictConfig]):
        self._test_dl = self._setup_eval_dataloader_from_config(cfg=test_data_config)
        # instantiate Torchmetric for each test dataloader
        if self._test_dl is not None:
            for dataloader_idx in range(len(self._test_dl)):
                if dataloader_idx == 0:
                    setattr(
                        self, f'test_loss', GlobalAverageLossMetric(dist_sync_on_step=False, take_avg_loss=True),
                    )
                else:
                    setattr(
                        self,
                        f'test_loss_{dataloader_idx}',
                        GlobalAverageLossMetric(dist_sync_on_step=False, take_avg_loss=True),
                    )

    def _setup_dataloader_from_config(self, cfg: DictConfig):
        if cfg.get("use_tarred_dataset", False):
            if cfg.get("metadata_file") is None:
                raise FileNotFoundError("Trying to use tarred data set but could not find metadata path in config.")
            else:
                if not self.multilingual:
                    metadata_file_list = [cfg.get('metadata_file')]
                else:
                    metadata_file_list = cfg.get('metadata_file')

                datasets = []
                for idx, metadata_file in enumerate(metadata_file_list):
                    with open(metadata_file) as metadata_reader:
                        metadata = json.load(metadata_reader)
                    if cfg.get('tar_files') is None:
                        tar_files = metadata.get('tar_files')
                        if tar_files is not None:
                            logging.info(f'Loading from tarred dataset {tar_files}')
                        else:
                            raise FileNotFoundError("Could not find tarred dataset in config or metadata.")
                    else:
                        tar_files = cfg.get('tar_files')
                        if self.multilingual:
                            tar_files = tar_files[idx]
                        if metadata.get('tar_files') is not None:
                            logging.info(
                                f'Tar file paths found in both cfg and metadata using one in cfg by default - {tar_files}'
                            )

                    dataset = TarredTranslationDataset(
                        text_tar_filepaths=tar_files,
                        metadata_path=metadata_file,
                        encoder_tokenizer=self.encoder_tokenizer,
                        decoder_tokenizer=self.decoder_tokenizer,
                        shuffle_n=cfg.get("tar_shuffle_n", 100),
                        shard_strategy=cfg.get("shard_strategy", "scatter"),
                        global_rank=self.global_rank,
                        world_size=self.world_size,
                        reverse_lang_direction=cfg.get("reverse_lang_direction", False),
                        prepend_id=self.multilingual_ids[idx],
                    )
                    datasets.append(dataset)

                if self.multilingual:
                    dataset = ConcatDataset(
                        datasets=datasets,
                        sampling_technique=cfg.get('concat_sampling_technique'),
                        sampling_temperature=cfg.get('concat_sampling_temperature'),
                        sampling_probabilities=cfg.get('concat_sampling_probabilities'),
                        global_rank=self.global_rank,
                        world_size=self.world_size,
                    )
                else:
                    dataset = datasets[0]

            return torch.utils.data.DataLoader(
                dataset=dataset,
                batch_size=1,
                num_workers=cfg.get("num_workers", 2),
                pin_memory=cfg.get("pin_memory", False),
                drop_last=cfg.get("drop_last", False),
            )
        else:
            if not self.multilingual:
                src_file_list = [cfg.src_file_name]
                tgt_file_list = [cfg.tgt_file_name]
            else:
                src_file_list = cfg.src_file_name
                tgt_file_list = cfg.tgt_file_name

            if len(src_file_list) != len(tgt_file_list):
                raise ValueError(
                    'The same number of filepaths must be passed in for source and target while training multilingual.'
                )

            datasets = []
            for idx, src_file in enumerate(src_file_list):
                dataset = TranslationDataset(
                    dataset_src=str(Path(src_file).expanduser()),
                    dataset_tgt=str(Path(tgt_file_list[idx]).expanduser()),
                    tokens_in_batch=cfg.tokens_in_batch,
                    clean=cfg.get("clean", False),
                    max_seq_length=cfg.get("max_seq_length", 512),
                    min_seq_length=cfg.get("min_seq_length", 1),
                    max_seq_length_diff=cfg.get("max_seq_length_diff", 512),
                    max_seq_length_ratio=cfg.get("max_seq_length_ratio", 512),
                    cache_ids=cfg.get("cache_ids", False),
                    cache_data_per_node=cfg.get("cache_data_per_node", False),
                    use_cache=cfg.get("use_cache", False),
                    reverse_lang_direction=cfg.get("reverse_lang_direction", False),
                    prepend_id=self.multilingual_ids[idx],
                )
                dataset.batchify(self.encoder_tokenizer, self.decoder_tokenizer)
                datasets.append(dataset)

            if self.multilingual:
                dataset = ConcatDataset(
                    datasets=datasets,
                    shuffle=cfg.get('shuffle'),
                    sampling_technique=cfg.get('concat_sampling_technique'),
                    sampling_temperature=cfg.get('concat_sampling_temperature'),
                    sampling_probabilities=cfg.get('concat_sampling_probabilities'),
                    global_rank=self.global_rank,
                    world_size=self.world_size,
                )
                return torch.utils.data.DataLoader(
                    dataset=dataset,
                    batch_size=1,
                    num_workers=cfg.get("num_workers", 2),
                    pin_memory=cfg.get("pin_memory", False),
                    drop_last=cfg.get("drop_last", False),
                )
            else:
                dataset = datasets[0]

        if cfg.shuffle:
            sampler = pt_data.RandomSampler(dataset)
        else:
            sampler = pt_data.SequentialSampler(dataset)
        return torch.utils.data.DataLoader(
            dataset=dataset,
            batch_size=1,
            sampler=sampler,
            num_workers=cfg.get("num_workers", 2),
            pin_memory=cfg.get("pin_memory", False),
            drop_last=cfg.get("drop_last", False),
        )

    def replace_beam_with_sampling(self, topk=500):
        self.beam_search = TopKSequenceGenerator(
            embedding=self.decoder.embedding,
            decoder=self.decoder.decoder,
            log_softmax=self.log_softmax,
            max_sequence_length=self.beam_search.max_seq_length,
            beam_size=topk,
            bos=self.decoder_tokenizer.bos_id,
            pad=self.decoder_tokenizer.pad_id,
            eos=self.decoder_tokenizer.eos_id,
        )

    def _setup_eval_dataloader_from_config(self, cfg: DictConfig):
        src_file_name = cfg.get('src_file_name')
        tgt_file_name = cfg.get('tgt_file_name')

        if src_file_name is None or tgt_file_name is None:
            raise ValueError(
                'Validation dataloader needs both cfg.src_file_name and cfg.tgt_file_name to not be None.'
            )
        else:
            # convert src_file_name and tgt_file_name to list of strings
            if isinstance(src_file_name, str):
                src_file_list = [src_file_name]
            elif isinstance(src_file_name, ListConfig):
                src_file_list = src_file_name
            else:
                raise ValueError("cfg.src_file_name must be string or list of strings")
            if isinstance(tgt_file_name, str):
                tgt_file_list = [tgt_file_name]
            elif isinstance(tgt_file_name, ListConfig):
                tgt_file_list = tgt_file_name
            else:
                raise ValueError("cfg.tgt_file_name must be string or list of strings")
        if len(src_file_list) != len(tgt_file_list):
            raise ValueError('The same number of filepaths must be passed in for source and target validation.')

        dataloaders = []
        prepend_idx = 0
        for idx, src_file in enumerate(src_file_list):
            if self.multilingual:
                prepend_idx = idx
            dataset = TranslationDataset(
                dataset_src=str(Path(src_file).expanduser()),
                dataset_tgt=str(Path(tgt_file_list[idx]).expanduser()),
                tokens_in_batch=cfg.tokens_in_batch,
                clean=cfg.get("clean", False),
                max_seq_length=cfg.get("max_seq_length", 512),
                min_seq_length=cfg.get("min_seq_length", 1),
                max_seq_length_diff=cfg.get("max_seq_length_diff", 512),
                max_seq_length_ratio=cfg.get("max_seq_length_ratio", 512),
                cache_ids=cfg.get("cache_ids", False),
                cache_data_per_node=cfg.get("cache_data_per_node", False),
                use_cache=cfg.get("use_cache", False),
                reverse_lang_direction=cfg.get("reverse_lang_direction", False),
                prepend_id=self.multilingual_ids[prepend_idx],
            )
            dataset.batchify(self.encoder_tokenizer, self.decoder_tokenizer)

            if cfg.shuffle:
                sampler = pt_data.RandomSampler(dataset)
            else:
                sampler = pt_data.SequentialSampler(dataset)

            dataloader = torch.utils.data.DataLoader(
                dataset=dataset,
                batch_size=1,
                sampler=sampler,
                num_workers=cfg.get("num_workers", 2),
                pin_memory=cfg.get("pin_memory", False),
                drop_last=cfg.get("drop_last", False),
            )
            dataloaders.append(dataloader)

        return dataloaders

    def setup_pre_and_post_processing_utils(self, source_lang, target_lang):
        """
        Creates source and target processor objects for input and output pre/post-processing.
        """
        self.source_processor, self.target_processor = None, None
        if (source_lang == 'en' and target_lang == 'ja') or (source_lang == 'ja' and target_lang == 'en'):
            self.source_processor = EnJaProcessor(source_lang)
            self.target_processor = EnJaProcessor(target_lang)
        else:
            if source_lang == 'zh':
                self.source_processor = ChineseProcessor()
            if target_lang == 'zh':
                self.target_processor = ChineseProcessor()
            if source_lang is not None and source_lang not in ['ja', 'zh']:
                self.source_processor = MosesProcessor(source_lang)
            if target_lang is not None and target_lang not in ['ja', 'zh']:
                self.target_processor = MosesProcessor(target_lang)

        return self.source_processor, self.target_processor

    @torch.no_grad()
    def batch_translate(
        self, src: torch.LongTensor, src_mask: torch.LongTensor,
    ):
        """	
        Translates a minibatch of inputs from source language to target language.	
        Args:	
            src: minibatch of inputs in the src language (batch x seq_len)	
            src_mask: mask tensor indicating elements to be ignored (batch x seq_len)	
        Returns:	
            translations: a list strings containing detokenized translations	
            inputs: a list of string containing detokenized inputs	
        """
        mode = self.training
        try:
            self.eval()
            src_hiddens = self.encoder(input_ids=src, encoder_mask=src_mask)
            beam_results = self.beam_search(encoder_hidden_states=src_hiddens, encoder_input_mask=src_mask)
            beam_results = self.filter_predicted_ids(beam_results)

            translations = [self.decoder_tokenizer.ids_to_text(tr) for tr in beam_results.cpu().numpy()]
            inputs = [self.encoder_tokenizer.ids_to_text(inp) for inp in src.cpu().numpy()]
            if self.target_processor is not None:
                translations = [
                    self.target_processor.detokenize(translation.split(' ')) for translation in translations
                ]

            if self.source_processor is not None:
                inputs = [self.source_processor.detokenize(item.split(' ')) for item in inputs]
        finally:
            self.train(mode=mode)
        return inputs, translations

    # TODO: We should drop source/target_lang arguments in favor of using self.src/tgt_language
    @torch.no_grad()
    def translate(self, text: List[str], source_lang: str = None, target_lang: str = None) -> List[str]:
        """
        Translates list of sentences from source language to target language.
        Should be regular text, this method performs its own tokenization/de-tokenization
        Args:
            text: list of strings to translate
            source_lang: if not None, corresponding MosesTokenizer and MosesPunctNormalizer will be run
            target_lang: if not None, corresponding MosesDecokenizer will be run
        Returns:
            list of translated strings
        """
        # __TODO__: This will reset both source and target processors even if you want to reset just one.
        if source_lang is not None or target_lang is not None:
            self.setup_pre_and_post_processing_utils(source_lang, target_lang)

        mode = self.training
        prepend_ids = []
        if self.multilingual:
            if source_lang is None or target_lang is None:
                raise ValueError("Expect source_lang and target_lang to infer for multilingual model.")
            src_symbol = self.encoder_tokenizer.token_to_id('<' + source_lang + '>')
            tgt_symbol = self.encoder_tokenizer.token_to_id('<' + target_lang + '>')
            prepend_ids = [src_symbol if src_symbol in self.multilingual_ids else tgt_symbol]
        try:
            self.eval()
            inputs = []
            for txt in text:
                if self.source_processor is not None:
                    txt = self.source_processor.normalize(txt)
                    txt = self.source_processor.tokenize(txt)
                ids = self.encoder_tokenizer.text_to_ids(txt)
                ids = prepend_ids + [self.encoder_tokenizer.bos_id] + ids + [self.encoder_tokenizer.eos_id]
                inputs.append(ids)
            max_len = max(len(txt) for txt in inputs)
            src_ids_ = np.ones((len(inputs), max_len)) * self.encoder_tokenizer.pad_id
            for i, txt in enumerate(inputs):
                src_ids_[i][: len(txt)] = txt

            src_mask = torch.FloatTensor((src_ids_ != self.encoder_tokenizer.pad_id)).to(self.device)
            src = torch.LongTensor(src_ids_).to(self.device)
            _, translations = self.batch_translate(src, src_mask)
        finally:
            self.train(mode=mode)
        return translations

    @classmethod
    def list_available_models(cls) -> Optional[Dict[str, str]]:
        """
        This method returns a list of pre-trained model which can be instantiated directly from NVIDIA's NGC cloud.

        Returns:
            List of available pre-trained models.
        """
        result = []
        model = PretrainedModelInfo(
            pretrained_model_name="nmt_en_de_transformer12x2",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/nmt_en_de_transformer12x2/versions/1.0.0rc1/files/nmt_en_de_transformer12x2.nemo",
            description="En->De translation model. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:nmt_en_de_transformer12x2",
        )
        result.append(model)

        model = PretrainedModelInfo(
            pretrained_model_name="nmt_de_en_transformer12x2",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/nmt_de_en_transformer12x2/versions/1.0.0rc1/files/nmt_de_en_transformer12x2.nemo",
            description="De->En translation model. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:nmt_de_en_transformer12x2",
        )
        result.append(model)

        model = PretrainedModelInfo(
            pretrained_model_name="nmt_en_es_transformer12x2",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/nmt_en_es_transformer12x2/versions/1.0.0rc1/files/nmt_en_es_transformer12x2.nemo",
            description="En->Es translation model. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:nmt_en_es_transformer12x2",
        )
        result.append(model)

        model = PretrainedModelInfo(
            pretrained_model_name="nmt_es_en_transformer12x2",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/nmt_es_en_transformer12x2/versions/1.0.0rc1/files/nmt_es_en_transformer12x2.nemo",
            description="Es->En translation model. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:nmt_es_en_transformer12x2",
        )
        result.append(model)

        model = PretrainedModelInfo(
            pretrained_model_name="nmt_en_fr_transformer12x2",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/nmt_en_fr_transformer12x2/versions/1.0.0rc1/files/nmt_en_fr_transformer12x2.nemo",
            description="En->Fr translation model. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:nmt_en_fr_transformer12x2",
        )
        result.append(model)

        model = PretrainedModelInfo(
            pretrained_model_name="nmt_fr_en_transformer12x2",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/nmt_fr_en_transformer12x2/versions/1.0.0rc1/files/nmt_fr_en_transformer12x2.nemo",
            description="Fr->En translation model. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:nmt_fr_en_transformer12x2",
        )
        result.append(model)

        model = PretrainedModelInfo(
            pretrained_model_name="nmt_en_ru_transformer6x6",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/nmt_en_ru_transformer6x6/versions/1.0.0rc1/files/nmt_en_ru_transformer6x6.nemo",
            description="En->Ru translation model. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:nmt_en_ru_transformer6x6",
        )
        result.append(model)

        model = PretrainedModelInfo(
            pretrained_model_name="nmt_ru_en_transformer6x6",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/nmt_ru_en_transformer6x6/versions/1.0.0rc1/files/nmt_ru_en_transformer6x6.nemo",
            description="Ru->En translation model. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:nmt_ru_en_transformer6x6",
        )
        result.append(model)

        model = PretrainedModelInfo(
            pretrained_model_name="nmt_zh_en_transformer6x6",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/nmt_zh_en_transformer6x6/versions/1.0.0rc1/files/nmt_zh_en_transformer6x6.nemo",
            description="Zh->En translation model. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:nmt_zh_en_transformer6x6",
        )
        result.append(model)

        model = PretrainedModelInfo(
            pretrained_model_name="nmt_en_zh_transformer6x6",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/nmt_en_zh_transformer6x6/versions/1.0.0rc1/files/nmt_en_zh_transformer6x6.nemo",
            description="En->Zh translation model. See details here: https://ngc.nvidia.com/catalog/models/nvidia:nemo:nmt_en_zh_transformer6x6",
        )
        result.append(model)

        return result