Exemple #1
0
    def __init__(self, name=None):
        # Initialize the inferface.
        super().__init__()

        # Retrieve dictionary of parameters (keys, values) passed to init.
        self._init_params = self.__extract_init_params()

        # Get object UUID.
        self._uuid = str(uuid.uuid4())

        # Register module and store the generated name.
        self._name = self._app_state.register_module(self, name)

        # Set "both" as default operation mode.
        self._operation_mode = OperationMode.both

        # Get default factory.
        self._factory = NeuralModuleFactory.get_default_factory()

        # Set module properties from factory else use defaults
        self._placement = self._factory.placement
        # If one needs to change that should override it manually.

        # Optimization level.
        self._opt_level = self._factory.optim_level
Exemple #2
0
    def __init__(
            self, *,
            pretrained_model_name=None,
            create_port_args=None,
            factory=None,
            placement=None,
            **kwargs
    ):
        self._pretrained_model_name = pretrained_model_name
        self._local_parameters = self.update_local_params()

        if create_port_args is None:
            create_port_args = {}
        self._input_ports, self._output_ports = self.create_ports(
            **create_port_args)

        default_factory = NeuralModuleFactory.get_default_factory()
        if (factory is None) and (default_factory is not None):
            factory = default_factory

        # Set module properties from factory else use defaults
        self._placement = factory.placement if factory is not None\
            else DeviceType.GPU
        self._opt_level = factory.optim_level if factory is not None\
            else Optimization.mxprO0
        self._logger = factory.logger if factory is not None\
            else logging

        # Update module properties using overrides if overrides exist
        if placement is not None:
            self._placement = placement

        self._factory = factory
        self._uuid = str(uuid.uuid4())
def neural_factory(request):
    """ Fixture creating a Neural Factory object parametrized by the command line --cpu argument """
    # Get flag.
    if request.config.getoption("--cpu"):
        device = DeviceType.CPU
    else:
        device = DeviceType.GPU
    # Initialize the default Neural Factory - on GPU.
    request.cls.nf = NeuralModuleFactory(placement=device)

    # Print standard header.
    logging.info("Using {} during testing".format(request.cls.nf.placement))
Exemple #4
0
    def __init__(self):

        # Get default factory.
        self._factory = NeuralModuleFactory.get_default_factory()

        # Set module properties from factory else use defaults
        self._placement = self._factory.placement
        # If one needs to change that should override it manually.

        # Optimization level.
        self._opt_level = self._factory.optim_level

        # Get object UUID.
        self._uuid = str(uuid.uuid4())

        # Retrieve dictionary of parameters (keys, values) passed to init.
        self._init_params = self.__extract_init_params()
Exemple #5
0
    def __init__(self, model_config, encoder_weights, decoder_weights):
        super().__init__()
        with open(model_config, 'r') as config:
            model_args = YAML.load(config)
        _ = NeuralModuleFactory(placement=DeviceType.CPU)

        encoder_params = model_args['init_params']['encoder_params']['init_params']
        self.encoder = JasperEncoder(**encoder_params)
        self.encoder.load_state_dict(torch.load(encoder_weights, map_location='cpu'))

        decoder_params = model_args['init_params']['decoder_params']['init_params']
        self.decoder = JasperDecoderForCTC(**decoder_params)
        self.decoder.load_state_dict(torch.load(decoder_weights, map_location='cpu'))

        self.encoder._prepare_for_deployment()
        self.decoder._prepare_for_deployment()
        convert_to_2d(self.encoder)
        convert_to_2d(self.decoder)
Exemple #6
0
from nemo.collections.cv.modules.data_layers import CIFAR100DataLayer
from nemo.collections.cv.modules.losses import NLLLoss
from nemo.collections.cv.modules.non_trainables import NonLinearity, ReshapeTensor
from nemo.collections.cv.modules.trainables import FeedForwardNetwork, ImageEncoder
from nemo.core import DeviceType, NeuralGraph, NeuralModuleFactory, OperationMode, SimpleLossLoggerCallback
from nemo.utils import logging

if __name__ == "__main__":
    # Create the default parser.
    parser = argparse.ArgumentParser(parents=[nm_argparse.NemoArgParser()],
                                     conflict_handler='resolve')
    # Parse the arguments
    args = parser.parse_args()

    # Instantiate Neural Factory.
    nf = NeuralModuleFactory(local_rank=args.local_rank,
                             placement=DeviceType.CPU)

    # Data layer - upscale the CIFAR100 images to ImageNet resolution.
    cifar100_dl = CIFAR100DataLayer(height=224, width=224, train=True)
    # The "model".
    image_encoder = ImageEncoder(model_type="vgg16",
                                 return_feature_maps=True,
                                 pretrained=True,
                                 name="vgg16")
    reshaper = ReshapeTensor(input_sizes=[-1, 7, 7, 512],
                             output_sizes=[-1, 25088])
    ffn = FeedForwardNetwork(input_size=25088,
                             output_size=100,
                             hidden_sizes=[1000, 1000],
                             dropout_rate=0.1)
    nl = NonLinearity(type="logsoftmax", sizes=[-1, 100])
        # "Deserialize" dim.
        deserialized_params["dim"] = init_params["dim"]

        # Custom "deserialization" of the status.
        if init_params["status"] == 0:
            deserialized_params["status"] = Status.success
        else:
            deserialized_params["status"] = Status.error

        # Return deserialized parameters.
        return deserialized_params


# Run on CPU.
nf = NeuralModuleFactory(placement=DeviceType.CPU)

# Instantitate RealFunctionDataLayer defaults to f=torch.sin, sampling from x=[-1, 1]
dl = RealFunctionDataLayer(n=100, f_name="cos", x_lo=-1, x_hi=1, batch_size=32)

# Instantiate a simple feed-forward, single layer neural network.
fx = CustomTaylorNet(dim=4, status=Status.error)

# Instantitate loss.
mse_loss = MSELoss()

# Export the model configuration.
fx.export_to_config("/tmp/custom_taylor_net.yml")

# Create a second instance, using the parameters loaded from the previously created configuration.
# Please note that we are calling the overriden method from the CustomTaylorNet class.
Exemple #8
0
else:
    schema_config = {
        "MAX_NUM_CAT_SLOT": 6,
        "MAX_NUM_NONCAT_SLOT": 12,
        "MAX_NUM_VALUE_PER_CAT_SLOT": 12,
        "MAX_NUM_INTENT": 4,
    }

if not os.path.exists(args.data_dir):
    raise ValueError(f'Data not found at {args.data_dir}')

nf = NeuralModuleFactory(
    backend=Backend.PyTorch,
    local_rank=args.local_rank,
    optimization_level=args.amp_opt_level,
    log_dir=args.work_dir,
    create_tb_writer=True,
    checkpoint_dir=args.checkpoint_dir,
    files_to_copy=[__file__],
    add_time_to_log_dir=not args.no_time_to_log_dir,
)

pretrained_bert_model = nemo_nlp.nm.trainables.get_pretrained_lm_model(
    pretrained_model_name=args.pretrained_model_name,
    config=args.bert_config,
    vocab=args.vocab_file,
    checkpoint=args.bert_checkpoint,
)

schema_config["EMBEDDING_DIMENSION"] = pretrained_bert_model.hidden_size
schema_config["MAX_SEQ_LENGTH"] = args.max_seq_length
Exemple #9
0
    if args.command == 'train':
        train_examples = torch.load(args.train_file_preprocessed)
        if args.eval_file_preprocessed:
            eval_examples, eval_special_tokens = torch.load(
                args.eval_file_preprocessed)
    test_examples, test_special_tokens = torch.load(
        args.test_file_preprocessed)

    label_map = utils.read_label_map(args.label_map_file)
    num_tags = len(label_map)

    nf = NeuralModuleFactory(
        local_rank=args.local_rank,
        optimization_level=args.amp_opt_level,
        log_dir=args.work_dir,
        create_tb_writer=True,
        files_to_copy=[__file__],
        add_time_to_log_dir=False,
    )

    encoder = nemo_nlp.nm.trainables.huggingface.get_huggingface_lm_model(
        pretrained_model_name=args.pretrained_model_name)

    tokenizer = nemo_nlp.data.NemoBertTokenizer(
        pretrained_model=args.pretrained_model_name)

    hidden_size = encoder.hidden_size

    # Size of the output vocabulary which contains the tags + begin and end
    # tokens used by the Transformer decoder.
    output_vocab_size = num_tags
    parser.add_argument("--work_dir", default='outputs', type=str, help='Path to where to store logs')

    args = parser.parse_args()

    # Get the absolute path.
    abs_data_dir = expanduser(args.data_dir)

    # Check if data dir exists
    if not exists(abs_data_dir):
        raise ValueError(f"Data folder `{abs_data_dir}` not found")

    if args.show_all_output:
        logging.setLevel('DEBUG')

    # Initialize NF.
    nf = NeuralModuleFactory(placement=DeviceType.CPU, local_rank=None, log_dir=args.work_dir, checkpoint_dir=None)

    # Initialize the modules.

    # List of the domains to be considered.
    domains = {"attraction": 0, "restaurant": 1, "train": 2, "hotel": 3, "taxi": 5}

    # Create DataDescriptor that contains information about domains, slots, and associated vocabulary
    data_desc = MultiWOZDataDesc(abs_data_dir, domains)
    vocab_size = len(data_desc.vocab)

    # Encoder changing the "user utterance" into format accepted by TRADE encoderRNN.
    user_utterance_encoder = UserUtteranceEncoder(data_desc=data_desc)

    # TRADE modules.
    trade_encoder = EncoderRNN(
Exemple #11
0
def sentence_classification(args):
    # TODO: construct name of experiment based on args
    """
    name = construct_name(
            args.exp_name,
            args.lr,
            args.batch_size,
            args.num_epochs,
            args.weight_decay,
            args.optimizer)
    work_dir = name
    if args.work_dir:
        work_dir = os.path.join(args.work_dir, name)
    """
    # Instantiate neural modules
    nf = NeuralModuleFactory(
        backend=nemo.core.Backend.PyTorch,
        local_rank=args.local_rank,
        optimization_level=args.amp_opt_level,
        log_dir=args.work_dir,
        create_tb_writer=True,
        files_to_copy=[__file__],
        add_time_to_log_dir=True)

    # Pre-trained BERT
    tokenizer = BertTokenizer.from_pretrained(args.pretrained_bert_model)

    if args.bert_checkpoint is None:
        bert = nemo_nlp.BERT(pretrained_model_name=args.pretrained_bert_model)
        # save bert config for inference after fine-tuning
        bert_config = bert.config.to_dict()
        with open(args.work_dir + '/' + args.pretrained_bert_model + '_config.json', 'w+') as json_file:
            json.dump(bert_config, json_file)
    else:
        if args.bert_config is not None:
            with open(args.bert_config) as json_file:
                bert_config = json.load(json_file)
        bert = nemo_nlp.BERT(**bert_config)
        bert.restore_from(args.bert_checkpoint)

    # MLP
    bert_hidden_size = bert.local_parameters['hidden_size']
    mlp = nemo_nlp.SequenceClassifier(
        hidden_size=bert_hidden_size,
        num_classes=args.num_classes,
        num_layers=args.num_layers,
        log_softmax=False,
        dropout=args.dropout)

    # TODO: save mlp/all model configs (bake in to Neural Module?)

    if args.mlp_checkpoint:
        mlp.restore_from(args.mlp_checkpoint)
    
    # Loss function for classification
    loss_fn = CrossEntropyLoss()

    # Data layers, pipelines, and callbacks
    callbacks = [] # callbacks depend on files present

    if args.train_file:
        if args.preproc:
            train_data_layer = preproc_data_layer.PreprocBertSentenceClassificationDataLayer(
            input_file=args.train_file,
            shuffle=True,
            num_samples=args.num_samples, # lower for dev, -1 for all dataset
            batch_size=args.batch_size,
            num_workers=0,
            local_rank=args.local_rank)

        else:
            train_data_layer = nemo_nlp.BertSentenceClassificationDataLayer(
            input_file=args.train_file,
            tokenizer=tokenizer,
            max_seq_length=args.max_seq_length,
            shuffle=True,
            num_samples=args.num_samples, # lower for dev, -1 for all dataset
            batch_size=args.batch_size,
            num_workers=0,
            local_rank=args.local_rank)

        train_logits, train_loss, steps_per_epoch, train_labels = create_pipeline(
            nf,
            train_data_layer,
            bert,
            mlp,
            loss_fn)

        train_callback = nemo.core.SimpleLossLoggerCallback(
            tensors=[train_loss, train_logits],
            print_func=lambda x: nf.logger.info(f'Train loss: {str(np.round(x[0].item(), 3))}'),
            tb_writer=nf.tb_writer,
            get_tb_values=lambda x: [["train_loss", x[0]]],
            step_freq=steps_per_epoch)

        callbacks.append(train_callback)

        if args.num_checkpoints != 0:
            ckpt_callback = nemo.core.CheckpointCallback(
                folder=nf.checkpoint_dir,
                epoch_freq=args.save_epoch_freq,
                step_freq=args.save_step_freq,
                checkpoints_to_keep=args.num_checkpoints)
            
            callbacks.append(ckpt_callback)
        

    if args.eval_file:
        if args.preproc:
            eval_data_layer = preproc_data_layer.PreprocBertSentenceClassificationDataLayer(
            input_file=args.eval_file,
            shuffle=False,
            num_samples=args.num_samples,
            batch_size=args.batch_size,
            num_workers=0,
            local_rank=args.local_rank)
        
        else:
            eval_data_layer = nemo_nlp.BertSentenceClassificationDataLayer(
            input_file=args.eval_file,
            tokenizer=tokenizer,
            max_seq_length=args.max_seq_length,
            shuffle=False,
            num_samples=args.num_samples,
            batch_size=args.batch_size,
            num_workers=0,
            local_rank=args.local_rank)

        eval_logits, eval_loss, _, eval_labels = create_pipeline(
            nf,
            eval_data_layer,
            bert,
            mlp,
            loss_fn)
        
        eval_callback = nemo.core.EvaluatorCallback(
            eval_tensors=[eval_logits, eval_labels],
            user_iter_callback=lambda x, y: eval_iter_callback(
                x, y, eval_data_layer),
            user_epochs_done_callback=lambda x: eval_epochs_done_callback(
                x, f'{nf.work_dir}/graphs'),
            tb_writer=nf.tb_writer,
            eval_step=steps_per_epoch)

        callbacks.append(eval_callback)
    
    if args.inference_file:
        if args.preproc:
            inference_data_layer = preproc_data_layer.PreprocBertSentenceClassificationDataLayer(
            input_file=args.inference_file,
            shuffle=False,
            num_samples=args.num_samples,
            batch_size=args.batch_size,
            num_workers=0,
            local_rank=args.local_rank)
        
        else:
            inference_data_layer = nemo_nlp.BertSentenceClassificationDataLayer(
            input_file=args.inference_file,
            tokenizer=tokenizer,
            max_seq_length=args.max_seq_length,
            shuffle=False,
            num_samples=args.num_samples,
            batch_size=args.batch_size,
            num_workers=0,
            local_rank=args.local_rank)

        # TODO: Finish inference
        inference_callback = None 

    # Training, eval and inference
    if args.train_file:
        lr_policy_fn = get_lr_policy(
            args.lr_policy,
            total_steps=args.num_epochs * steps_per_epoch,
            warmup_ratio=args.lr_warmup_proportion)

        nf.train(
            tensors_to_optimize=[train_loss],
            callbacks=callbacks,
            lr_policy=lr_policy_fn,
            optimizer=args.optimizer_kind,
            optimization_params={'num_epochs': args.num_epochs, 'lr': args.lr})
Exemple #12
0
import nemo.utils.argparse as nm_argparse
from nemo.collections.cv.modules.data_layers import MNISTDataLayer
from nemo.collections.cv.modules.losses import NLLLoss
from nemo.collections.cv.modules.trainables import LeNet5
from nemo.core import DeviceType, NeuralGraph, NeuralModuleFactory, OperationMode
from nemo.utils import logging

if __name__ == "__main__":
    # Create the default parser.
    parser = argparse.ArgumentParser(parents=[nm_argparse.NemoArgParser()],
                                     conflict_handler='resolve')
    # Parse the arguments
    args = parser.parse_args()

    # Instantiate Neural Factory.
    nf = NeuralModuleFactory(local_rank=args.local_rank)

    # Data layers for training and validation.
    dl = MNISTDataLayer(height=32, width=32, train=True)
    dl_e = MNISTDataLayer(height=32, width=32, train=False)
    # The "model".
    lenet5 = LeNet5()
    # Loss.
    nll_loss = NLLLoss()

    # Create a training graph.
    with NeuralGraph(operation_mode=OperationMode.training) as training_graph:
        _, x, y, _ = dl()
        p = lenet5(images=x)
        loss = nll_loss(predictions=p, targets=y)