choices=["O0", "O1", "O2"]) args = parser.parse_args() print(args) if not os.path.exists(args.work_dir): raise ValueError(f'Work directory not found at {args.work_dir}') if not os.path.exists(args.labels_dict): raise ValueError( f'Dictionary with ids to labels not found at {args.labels_dict}') nf = nemo.core.NeuralModuleFactory(backend=nemo.core.Backend.PyTorch, optimization_level=args.amp_opt_level, log_dir=None) labels_dict = get_vocab(args.labels_dict) """ Load the pretrained BERT parameters See the list of pretrained models, call: nemo_nlp.huggingface.BERT.list_pretrained_models() """ pretrained_bert_model = nemo_nlp.huggingface.BERT( pretrained_model_name=args.pretrained_bert_model) hidden_size = pretrained_bert_model.local_parameters["hidden_size"] tokenizer = NemoBertTokenizer(args.pretrained_bert_model) data_layer = nemo_nlp.BertTokenClassificationInferDataLayer( queries=args.queries, tokenizer=tokenizer, max_seq_length=args.max_seq_length, batch_size=1)
args = parser.parse_args() if not os.path.exists(args.checkpoints_dir): raise ValueError(f'Checkpoints folder not found at {args.checkpoints_dir}') if not (os.path.exists(args.punct_labels_dict) and os.path.exists(args.capit_labels_dict)): raise ValueError( f'Dictionary with ids to labels not found at {args.punct_labels_dict} \ or {args.punct_labels_dict}') nf = nemo.core.NeuralModuleFactory(backend=nemo.core.Backend.PyTorch, optimization_level=args.amp_opt_level, log_dir=None) punct_labels_dict = get_vocab(args.punct_labels_dict) capit_labels_dict = get_vocab(args.capit_labels_dict) """ Load the pretrained BERT parameters See the list of pretrained models, call: nemo_nlp.huggingface.BERT.list_pretrained_models() """ pretrained_bert_model = nemo_nlp.huggingface.BERT( pretrained_model_name=args.pretrained_bert_model) hidden_size = pretrained_bert_model.local_parameters["hidden_size"] tokenizer = NemoBertTokenizer(args.pretrained_bert_model) data_layer = nemo_nlp.BertTokenClassificationInferDataLayer( queries=args.queries, tokenizer=tokenizer, max_seq_length=args.max_seq_length,