Exemple #1
0
def generate_prediction(est, val, modelspecs):
    list_val = False
    if type(val) is list:
        # ie, if jackknifing
        list_val = True
    else:
        # Evaluate estimation and validation data

        # Since ms.evaluate only does a shallow copy of rec, successive
        # evaluations of one rec on many modelspecs just results in a list of
        # different pointers to the same recording. So need to force copies of
        # est/val before evaluating.
        if len(modelspecs) == 1:
            # no copies needed for 1 modelspec
            est = [est]
            val = [val]
        else:
            est = [est.copy() for i, _ in enumerate(modelspecs)]
            val = [val.copy() for i, _ in enumerate(modelspecs)]

    new_est = [ms.evaluate(d, m) for m, d in zip(modelspecs, est)]
    new_val = [ms.evaluate(d, m) for m, d in zip(modelspecs, val)]
    if list_val:
        new_val = [recording.jackknife_inverse_merge(new_val)]

    return new_est, new_val
Exemple #2
0
def generate_prediction(est, val, modelspecs):

    if type(val) is list:
        # ie, if jackknifing
        new_est = [ms.evaluate(d, m) for m, d in zip(modelspecs, est)]
        new_val = [ms.evaluate(d, m) for m, d in zip(modelspecs, val)]
        new_val = [recording.jackknife_inverse_merge(new_val)]
    else:
        # Evaluate estimation and validation data
        new_est = [ms.evaluate(est, m) for m in modelspecs]
        new_val = [ms.evaluate(val, m) for m in modelspecs]

    return new_est, new_val
Exemple #3
0
def generate_prediction(est, val, modelspecs):
    list_val = False
    if type(val) is list:
        # ie, if jackknifing
        list_val = True
    else:
        # Evaluate estimation and validation data

        # Since ms.evaluate only does a shallow copy of rec, successive
        # evaluations of one rec on many modelspecs just results in a list of
        # different pointers to the same recording. So need to force copies of
        # est/val before evaluating.
        if len(modelspecs) == 1:
            # no copies needed for 1 modelspec
            est = [est]
            val = [val]
        else:
            est = [est.copy() for i, _ in enumerate(modelspecs)]
            val = [val.copy() for i, _ in enumerate(modelspecs)]

    new_est = []
    new_val = []
    for m, e, v in zip(modelspecs, est, val):
        # nan-out periods outside of mask
        e = ms.evaluate(e, m)
        v = ms.evaluate(v, m)
        if 'mask' in v.signals.keys():
            m = v['mask'].as_continuous()
            x = v['pred'].as_continuous().copy()
            x[..., m[0,:] == 0] = np.nan
            v['pred'] = v['pred']._modified_copy(x)
        new_est.append(e)
        new_val.append(v)

    #new_est = [ms.evaluate(d, m) for m, d in zip(modelspecs, est)]
    #new_val = [ms.evaluate(d, m) for m, d in zip(modelspecs, val)]

    if list_val:
        new_val = [recording.jackknife_inverse_merge(new_val)]

    return new_est, new_val
Exemple #4
0
def stim_estimator_PCA(rec, npcs):
    x = len(rec['resp'].chans)
    ##########
    pca_out = PCA(rec['resp'], center=False)
    rec['resp'] = rec['resp'].rasterize()._modified_copy(
        np.matmul(pca_out['pcs'][:, 0:npcs], pca_out['loading'][0:npcs, :]).T)
    for i in range(10):
        rec['stim'] = rec['stim'].rasterize()
        i += 1
    nfolds = 10
    ests, vals, m = preproc.mask_est_val_for_jackknife(rec, modelspecs=None,
                                                       njacks=nfolds)
    for i in range(10):
        vals[i]['stim'] = vals[i]['stim'].rasterize()
        i += 1
    new_val = recording.jackknife_inverse_merge(vals)
    S_est_list = []
    for i in range(10):
        est = ests[i].apply_mask()
        stim = est['stim']
        resp_est = est['resp'].rasterize()
        X_est = stim.rasterize().as_continuous()
        Y_est = resp_est.as_continuous()
        mean_array = dc.mean_array_resp(x, Y_est)
        Y_est_subtracted = dc.Y_est_subtractedavg(mean_array, x, Y_est)
        S = X_est  # stim est set
        R = Y_est_subtracted  # response est set
        R1 = np.concatenate((R[:x, 2:], np.zeros((x, 2))), axis=1)
        R2 = np.concatenate((R, R1), axis=0)
        R3 = np.concatenate((R[:x, 4:], np.zeros((x, 4))), axis=1)
        R4 = np.concatenate((R2, R3), axis=0)
        R5 = np.concatenate((R[:x, 6:], np.zeros((x, 6))), axis=1)
        R6 = np.concatenate((R4, R5), axis=0)
        R7 = np.concatenate((R[:x, 8:], np.zeros((x, 8))), axis=1)
        R8 = np.concatenate((R6, R7), axis=0)
        R9 = np.concatenate((R[:x, 10:], np.zeros((x, 10))), axis=1)
        R10 = np.concatenate((R8, R9), axis=0)
        R11 = np.concatenate((R[:x, 12:], np.zeros((x, 12))), axis=1)
        R12 = np.concatenate((R10, R11), axis=0)
        R13 = np.concatenate((R[:x, 14:], np.zeros((x, 14))), axis=1)
        R14 = np.concatenate((R12, R13), axis=0)
        R15 = np.concatenate((R[:x, 16:], np.zeros((x, 16))), axis=1)
        R16 = np.concatenate((R14, R15), axis=0)
        R17 = np.concatenate((R[:x, 18:], np.zeros((x, 18))), axis=1)
        R18 = np.concatenate((R16, R17), axis=0)
        R19 = np.concatenate((R[:x, 20:], np.zeros((x, 20))), axis=1)
        R20 = np.concatenate((R18, R19), axis=0)
        R_trans = np.transpose(R20)
        Crr = np.matmul(R20, R_trans)
        Crs = np.matmul(S, R_trans)
        Crr_inv = np.linalg.inv(Crr)
        G = np.matmul(Crs, Crr_inv)

        resp_val = new_val['resp']
        Y_val = resp_val.as_continuous()
        Y_val = np.nan_to_num(Y_val)
        shape = Y_val.shape
        y = shape[1]
        Y_val_segment = Y_val[:, int((y / 10) * i):int((y / 10) * (i + 1))]
        shape = Y_val_segment.shape
        y = shape[1]
        Y_val_subtractedavg = np.zeros(shape=(x, y))
        for u in range(x):
            Y_est_cell_mean = mean_array[u]
            difference = Y_val_segment[u, :] - Y_est_cell_mean
            Y_val_subtractedavg[u] = difference
            u += 1
        R_val = Y_val_subtractedavg
        R1_val = np.concatenate((R_val[:x, 2:], np.zeros((x, 2))), axis=1)
        R2_val = np.concatenate((R_val, R1_val), axis=0)
        R3_val = np.concatenate((R_val[:x, 4:], np.zeros((x, 4))), axis=1)
        R4_val = np.concatenate((R2_val, R3_val), axis=0)
        R5_val = np.concatenate((R_val[:x, 6:], np.zeros((x, 6))), axis=1)
        R6_val = np.concatenate((R4_val, R5_val), axis=0)
        R7_val = np.concatenate((R_val[:x, 8:], np.zeros((x, 8))), axis=1)
        R8_val = np.concatenate((R6_val, R7_val), axis=0)
        R9_val = np.concatenate((R_val[:x, 10:], np.zeros((x, 10))), axis=1)
        R10_val = np.concatenate((R8_val, R9_val), axis=0)
        R11_val = np.concatenate((R_val[:x, 12:], np.zeros((x, 12))), axis=1)
        R12_val = np.concatenate((R10_val, R11_val), axis=0)
        R13_val = np.concatenate((R_val[:x, 14:], np.zeros((x, 14))), axis=1)
        R14_val = np.concatenate((R12_val, R13_val), axis=0)
        R15_val = np.concatenate((R_val[:x, 16:], np.zeros((x, 16))), axis=1)
        R16_val = np.concatenate((R14_val, R15_val), axis=0)
        R17_val = np.concatenate((R_val[:x, 18:], np.zeros((x, 18))), axis=1)
        R18_val = np.concatenate((R16_val, R17_val), axis=0)
        R19_val = np.concatenate((R_val[:x, 20:], np.zeros((x, 20))), axis=1)
        R20_val = np.concatenate((R18_val, R19_val), axis=0)
        S_est = np.matmul(G, R20_val)
        S_est[S_est < 0] = 0
        S_est_list.append(S_est)
        i += 1
    S_est = np.concatenate((S_est_list[0], S_est_list[1], S_est_list[2], S_est_list[3], S_est_list[4], S_est_list[5],
                            S_est_list[6], S_est_list[7], S_est_list[8], S_est_list[9]), axis=1)
    return S_est