Exemple #1
0
def test_build_linear_system(seed, rng, plt, allclose):
    func = lambda x: x**2

    with nengo.Network(seed=seed) as net:
        conn = nengo.Connection(nengo.Ensemble(60, 1),
                                nengo.Ensemble(50, 1),
                                function=func)

    model = Model()
    model.build(net)
    eval_points, activities, targets = build_linear_system(model, conn, rng)
    assert eval_points.shape[1] == 1
    assert targets.shape[1] == 1
    assert activities.shape[1] == 60
    assert eval_points.shape[0] == activities.shape[0] == targets.shape[0]

    X = eval_points
    AA = activities.T.dot(activities)
    AX = activities.T.dot(eval_points)
    AY = activities.T.dot(targets)
    WX = np.linalg.solve(AA, AX)
    WY = np.linalg.solve(AA, AY)

    Xhat = activities.dot(WX)
    Yhat = activities.dot(WY)

    i = np.argsort(eval_points.ravel())
    plt.plot(X[i], Xhat[i])
    plt.plot(X[i], Yhat[i])

    assert allclose(Xhat, X, atol=1e-1)
    assert allclose(Yhat, func(X), atol=1e-1)
Exemple #2
0
    def __init__(
            self, network, dt=0.001, seed=None, model=None, progress_bar=True):
        self.closed = False
        self.progress_bar = progress_bar

        if model is None:
            self._model = Model(dt=float(dt),
                                label="%s, dt=%f" % (network, dt),
                                decoder_cache=get_default_decoder_cache())
        else:
            self._model = model

        if network is not None:
            # Build the network into the model
            self._model.build(network, progress_bar=self.progress_bar)

        # -- map from Signal.base -> ndarray
        self.signals = SignalDict()
        for op in self._model.operators:
            op.init_signals(self.signals)

        # Order the steps (they are made in `Simulator.reset`)
        self.dg = operator_depencency_graph(self._model.operators)
        self._step_order = [op for op in toposort(self.dg)
                            if hasattr(op, 'make_step')]

        # Add built states to the probe dictionary
        self._probe_outputs = self._model.params

        # Provide a nicer interface to probe outputs
        self.data = ProbeDict(self._probe_outputs)

        seed = np.random.randint(npext.maxint) if seed is None else seed
        self.reset(seed=seed)
Exemple #3
0
    def __init__(self,
                 network,
                 dt=0.001,
                 seed=None,
                 model=None,
                 progress_bar=True,
                 optimize=True):
        self.closed = True  # Start closed in case constructor raises exception
        self.progress_bar = progress_bar
        self.optimize = optimize

        if model is None:
            self.model = Model(
                dt=float(dt),
                label="%s, dt=%f" % (network, dt),
                decoder_cache=get_default_decoder_cache(),
            )
        else:
            self.model = model

        pt = ProgressTracker(progress_bar, Progress("Building", "Build"))
        with pt:
            if network is not None:
                # Build the network into the model
                self.model.build(network,
                                 progress=pt.next_stage("Building", "Build"))

            # Order the steps (they are made in `Simulator.reset`)
            self.dg = operator_dependency_graph(self.model.operators)

            if optimize:
                with pt.next_stage("Building (running optimizer)",
                                   "Optimization"):
                    opmerge_optimize(self.model, self.dg)

        self._step_order = [
            op for op in toposort(self.dg) if hasattr(op, "make_step")
        ]

        # -- map from Signal.base -> ndarray
        self.signals = SignalDict()
        for op in self.model.operators:
            op.init_signals(self.signals)

        # Add built states to the raw simulation data dictionary
        self._sim_data = self.model.params

        # Provide a nicer interface to simulation data
        self.data = SimulationData(self._sim_data)

        if seed is None:
            if network is not None and network.seed is not None:
                seed = network.seed + 1
            else:
                seed = np.random.randint(npext.maxint)

        self.closed = False
        self.reset(seed=seed)
Exemple #4
0
def test_commonsig_readonly():
    """Test that the common signals cannot be modified."""
    net = nengo.Network(label="test_commonsig")
    model = Model()
    model.build(net)
    signals = SignalDict()

    for sig in itervalues(model.sig['common']):
        signals.init(sig)
        with pytest.raises((ValueError, RuntimeError)):
            signals[sig] = np.array([-1])
        with pytest.raises((ValueError, RuntimeError)):
            signals[sig][...] = np.array([-1])
Exemple #5
0
def test_commonsig_readonly():
    """Test that the common signals cannot be modified."""
    net = nengo.Network(label="test_commonsig")
    model = Model()
    model.build(net)
    signals = SignalDict()

    for sig in itervalues(model.sig['common']):
        signals.init(sig)
        with pytest.raises((ValueError, RuntimeError)):
            signals[sig] = np.array([-1])
        with pytest.raises((ValueError, RuntimeError)):
            signals[sig][...] = np.array([-1])
Exemple #6
0
def test_multidotinc_compress(monkeypatch):
    if nengo.version.version_info < (2, 3, 1):  # LEGACY
        # Nengo versions <= 2.3.0 have more stringent op validation which
        # required PreserveValue. That's been removed, so the strict
        # validation causes this test to fail despite it working.
        monkeypatch.setattr(nengo.utils.simulator, "validate_ops", lambda *args: None)

    a = Signal([0, 0])
    b = Signal([0, 0])
    A = Signal([[1, 2], [0, 1]])
    B = Signal([[2, 1], [-1, 1]])
    x = Signal([1, 1])
    y = Signal([1, -1])

    m = Model(dt=0)
    m.operators += [Reset(a), DotInc(A, x, a), DotInc(B, y, a)]
    m.operators += [DotInc(A, y, b), DotInc(B, x, b)]

    with nengo_ocl.Simulator(None, model=m) as sim:
        sim.step()
        assert np.allclose(sim.signals[a], [4, -1])
        assert np.allclose(sim.signals[b], [2, -1])
        sim.step()
        assert np.allclose(sim.signals[a], [4, -1])
        assert np.allclose(sim.signals[b], [4, -2])
Exemple #7
0
def test_encoder_decoder_with_views(RefSimulator):
    foo = Signal([1.0], name="foo")
    decoders = np.asarray([.2, .1])
    m = Model(dt=0.001)
    sig_in, sig_out = build_pyfunc(lambda t, x: x + 1, True, 2, 2, None, m)
    m.operators += [
        DotInc(Signal([[1.0], [2.0]]), foo[:], sig_in),
        ProdUpdate(Signal(decoders * 0.5), sig_out, Signal(0.2), foo[:])
    ]

    def check(sig, target):
        assert np.allclose(sim.signals[sig], target)

    sim = RefSimulator(None, model=m)

    sim.step()
    # DotInc to pop.input_signal (input=[1.0,2.0])
    # produpdate updates foo (foo=[0.2])
    # pop updates pop.output_signal (output=[2,3])

    check(foo, .2)
    check(sig_in, [1, 2])
    check(sig_out, [2, 3])

    sim.step()
    # DotInc to pop.input_signal (input=[0.2,0.4])
    #  (note that pop resets its own input signal each timestep)
    # produpdate updates foo (foo=[0.39]) 0.2*0.5*2+0.1*0.5*3 + 0.2*0.2
    # pop updates pop.output_signal (output=[1.2,1.4])

    check(foo, .39)
    check(sig_in, [0.2, 0.4])
    check(sig_out, [1.2, 1.4])
Exemple #8
0
def test_noise(RefSimulator, seed):
    """Make sure that we can generate noise properly."""

    n = 1000
    mean, std = 0.1, 0.8
    noise = Signal(np.zeros(n), name="noise")
    process = nengo.processes.StochasticProcess(nengo.dists.Gaussian(
        mean, std))

    m = Model(dt=0.001)
    m.operators += [Reset(noise), SimNoise(noise, process)]

    sim = RefSimulator(None, model=m, seed=seed)
    samples = np.zeros((100, n))
    for i in range(100):
        sim.step()
        samples[i] = sim.signals[noise]

    h, xedges = np.histogram(samples.flat, bins=51)
    x = 0.5 * (xedges[:-1] + xedges[1:])
    dx = np.diff(xedges)
    z = 1. / np.sqrt(2 * np.pi * std**2) * np.exp(-0.5 *
                                                  (x - mean)**2 / std**2)
    y = h / float(h.sum()) / dx
    assert np.allclose(y, z, atol=0.02)
Exemple #9
0
def test_signal_indexing_1(RefSimulator):
    one = Signal(np.zeros(1), name="a")
    two = Signal(np.zeros(2), name="b")
    three = Signal(np.zeros(3), name="c")
    tmp = Signal(np.zeros(3), name="tmp")

    m = Model(dt=0.001)
    m.operators += [
        Reset(one),
        Reset(two),
        Reset(tmp),
        DotInc(Signal(1, name="A1"), three[:1], one),
        DotInc(Signal(2.0, name="A2"), three[1:], two),
        DotInc(Signal([[0, 0, 1], [0, 1, 0], [1, 0, 0]], name="A3"), three,
               tmp),
        Copy(src=tmp, dst=three, as_update=True),
    ]

    sim = RefSimulator(None, model=m)
    sim.signals[three] = np.asarray([1, 2, 3])
    sim.step()
    assert np.all(sim.signals[one] == 1)
    assert np.all(sim.signals[two] == [4, 6])
    assert np.all(sim.signals[three] == [3, 2, 1])
    sim.step()
    assert np.all(sim.signals[one] == 3)
    assert np.all(sim.signals[two] == [4, 2])
    assert np.all(sim.signals[three] == [1, 2, 3])
Exemple #10
0
def test_build_linear_system_zeroact(seed, rng):
    eval_points = np.linspace(-0.1, 0.1, 100)[:, None]

    with nengo.Network(seed=seed) as net:
        a = nengo.Ensemble(5, 1, intercepts=nengo.dists.Choice([0.9]))
        b = nengo.Ensemble(5, 1, intercepts=nengo.dists.Choice([0.9]))

    model = Model()
    model.build(net)

    conn = nengo.Connection(a,
                            b,
                            eval_points=eval_points,
                            add_to_container=False)
    with pytest.raises(BuildError, match="'activities' matrix is all zero"):
        build_linear_system(model, conn, rng)
Exemple #11
0
def test_signal_init_values(RefSimulator):
    """Tests that initial values are not overwritten."""
    zero = Signal([0])
    one = Signal([1])
    five = Signal([5.0])
    zeroarray = Signal([[0], [0], [0]])
    array = Signal([1, 2, 3])

    m = Model(dt=0)
    m.operators += [
        PreserveValue(five),
        PreserveValue(array),
        DotInc(zero, zero, five),
        DotInc(zeroarray, one, array)
    ]

    sim = RefSimulator(None, model=m)
    assert sim.signals[zero][0] == 0
    assert sim.signals[one][0] == 1
    assert sim.signals[five][0] == 5.0
    assert np.all(np.array([1, 2, 3]) == sim.signals[array])
    sim.step()
    assert sim.signals[zero][0] == 0
    assert sim.signals[one][0] == 1
    assert sim.signals[five][0] == 5.0
    assert np.all(np.array([1, 2, 3]) == sim.signals[array])
Exemple #12
0
    def __init__(self, network, dt=0.001, seed=None, model=None):
        self.closed = False

        if model is None:
            dt = float(dt)  # make sure it's a float (for division purposes)
            self.model = Model(dt=dt,
                               label="%s, dt=%f" % (network, dt),
                               decoder_cache=get_default_decoder_cache())
        else:
            self.model = model

        if network is not None:
            # Build the network into the model
            self.model.build(network)

        self.model.decoder_cache.shrink()

        # -- map from Signal.base -> ndarray
        self.signals = SignalDict()
        for op in self.model.operators:
            op.init_signals(self.signals)

        # Order the steps (they are made in `Simulator.reset`)
        self.dg = operator_depencency_graph(self.model.operators)
        self._step_order = [op for op in toposort(self.dg)
                            if hasattr(op, 'make_step')]

        # Add built states to the probe dictionary
        self._probe_outputs = self.model.params

        # Provide a nicer interface to probe outputs
        self.data = ProbeDict(self._probe_outputs)

        seed = np.random.randint(npext.maxint) if seed is None else seed
        self.reset(seed=seed)
def test_session_config(Simulator, as_model):
    with Network() as net:
        config.configure_settings(session_config={
            "graph_options.optimizer_options.opt_level": 21,
            "gpu_options.allow_growth": True})

    if as_model:
        # checking that config settings work when we pass in a model instead of
        # network
        model = Model(dt=0.001, builder=builder.NengoBuilder())
        model.build(net)
        net = None
    else:
        model = None

    with Simulator(net, model=model) as sim:
        assert sim.sess._config.graph_options.optimizer_options.opt_level == 21
        assert sim.sess._config.gpu_options.allow_growth
Exemple #14
0
def test_session_config(Simulator, as_model):
    with Network() as net:
        config.configure_settings(
            session_config={
                "graph_options.optimizer_options.opt_level": 21,
                "gpu_options.allow_growth": True
            })

    if as_model:
        # checking that config settings work when we pass in a model instead of
        # network
        model = Model(dt=0.001, builder=builder.NengoBuilder())
        model.build(net)
        net = None
    else:
        model = None

    with Simulator(net, model=model) as sim:
        assert sim.sess._config.graph_options.optimizer_options.opt_level == 21
        assert sim.sess._config.gpu_options.allow_growth
Exemple #15
0
def test_hierarchical_seeding():
    """Changes to subnetworks shouldn't affect seeds in top-level network"""

    def create(make_extra, seed):
        objs = []
        with nengo.Network(seed=seed, label='n1') as model:
            objs.append(nengo.Ensemble(10, 1, label='e1'))
            with nengo.Network(label='n2'):
                objs.append(nengo.Ensemble(10, 1, label='e2'))
                if make_extra:
                    # This shouldn't affect any seeds
                    objs.append(nengo.Ensemble(10, 1, label='e3'))
            objs.append(nengo.Ensemble(10, 1, label='e4'))
        return model, objs

    same1, same1objs = create(False, 9)
    same2, same2objs = create(True, 9)
    diff, diffobjs = create(True, 10)

    m1 = Model()
    m1.build(same1)
    same1seeds = m1.seeds

    m2 = Model()
    m2.build(same2)
    same2seeds = m2.seeds

    m3 = Model()
    m3.build(diff)
    diffseeds = m3.seeds

    for diffobj, same2obj in zip(diffobjs, same2objs):
        # These seeds should all be different
        assert diffseeds[diffobj] != same2seeds[same2obj]

    # Skip the extra ensemble
    same2objs = same2objs[:2] + same2objs[3:]

    for same1obj, same2obj in zip(same1objs, same2objs):
        # These seeds should all be the same
        assert same1seeds[same1obj] == same2seeds[same2obj]
Exemple #16
0
def test_encoder_decoder_pathway(RefSimulator):
    """Verifies (like by hand) that the simulator does the right
    things in the right order."""
    foo = Signal([1.0], name="foo")
    decoders = np.asarray([.2, .1])
    decs = Signal(decoders * 0.5)
    m = Model(dt=0.001)
    sig_in, sig_out = build_pyfunc(lambda t, x: x + 1, True, 2, 2, None, m)
    m.operators += [
        DotInc(Signal([[1.0], [2.0]]), foo, sig_in),
        ProdUpdate(decs, sig_out, Signal(0.2), foo)
    ]

    def check(sig, target):
        assert np.allclose(sim.signals[sig], target)

    sim = RefSimulator(None, model=m)

    check(foo, 1.0)
    check(sig_in, 0)
    check(sig_out, 0)

    sim.step()
    # DotInc to pop.input_signal (input=[1.0,2.0])
    # produpdate updates foo (foo=[0.2])
    # pop updates pop.output_signal (output=[2,3])

    check(sig_in, [1, 2])
    check(sig_out, [2, 3])
    check(foo, .2)
    check(decs, [.1, .05])

    sim.step()
    # DotInc to pop.input_signal (input=[0.2,0.4])
    #  (note that pop resets its own input signal each timestep)
    # produpdate updates foo (foo=[0.39]) 0.2*0.5*2+0.1*0.5*3 + 0.2*0.2
    # pop updates pop.output_signal (output=[1.2,1.4])

    check(decs, [.1, .05])
    check(sig_in, [0.2, 0.4])
    check(sig_out, [1.2, 1.4])
    # -- foo is computed as a prodUpdate of the *previous* output signal
    #    foo <- .2 * foo + dot(decoders * .5, output_signal)
    #           .2 * .2  + dot([.2, .1] * .5, [2, 3])
    #           .04      + (.2 + .15)
    #        <- .39
    check(foo, .39)
Exemple #17
0
def test_simple_pyfunc(RefSimulator):
    dt = 0.001
    time = Signal(np.zeros(1), name="time")
    sig = Signal(np.zeros(1), name="sig")
    m = Model(dt=dt)
    sig_in, sig_out = build_pyfunc(lambda t, x: np.sin(x), True, 1, 1, None, m)
    m.operators += [
        ProdUpdate(Signal(dt), Signal(1), Signal(1), time),
        DotInc(Signal([[1.0]]), time, sig_in),
        ProdUpdate(Signal([[1.0]]), sig_out, Signal(0), sig),
    ]

    sim = RefSimulator(None, model=m)
    sim.step()
    for i in range(5):
        sim.step()
        t = (i + 2) * dt
        assert np.allclose(sim.signals[time], t)
        assert np.allclose(sim.signals[sig], np.sin(t - dt * 2))
Exemple #18
0
def test_simple_pyfunc(RefSimulator):
    dt = 0.001
    time = Signal(np.zeros(1), name="time")
    sig = Signal(np.zeros(1), name="sig")
    m = Model(dt=dt)
    sig_in, sig_out = build_pyfunc(m, lambda t, x: np.sin(x), True, 1, 1, None)
    m.operators += [
        Reset(sig),
        DotInc(Signal([[1.0]]), time, sig_in),
        DotInc(Signal([[1.0]]), sig_out, sig),
        DotInc(Signal(dt), Signal(1), time, as_update=True),
    ]

    sim = RefSimulator(None, model=m)
    for i in range(5):
        sim.step()
        t = i * dt
        assert np.allclose(sim.signals[sig], np.sin(t))
        assert np.allclose(sim.signals[time], t + dt)
Exemple #19
0
    def __init__(self, network, dt=0.001, seed=None, model=None):
        """Initialize the simulator with a network and (optionally) a model.

        Most of the time, you will pass in a network and sometimes a dt::

            sim1 = nengo.Simulator(my_network)  # Uses default 0.001s dt
            sim2 = nengo.Simulator(my_network, dt=0.01)  # Uses 0.01s dt

        For more advanced use cases, you can initialize the model yourself,
        and also pass in a network that will be built into the same model
        that you pass in::

            sim = nengo.Simulator(my_network, model=my_model)

        If you want full control over the build process, then you can build
        your network into the model manually. If you do this, then you must
        explicitly pass in ``None`` for the network::

            sim = nengo.Simulator(None, model=my_model)

        Parameters
        ----------
        network : nengo.Network instance or None
            A network object to the built and then simulated.
            If a fully built ``model`` is passed in, then you can skip
            building the network by passing in network=None.
        dt : float, optional
            The length of a simulator timestep, in seconds.
        seed : int, optional
            A seed for all stochastic operators used in this simulator.
        model : nengo.builder.Model instance or None, optional
            A model object that contains build artifacts to be simulated.
            Usually the simulator will build this model for you; however,
            if you want to build the network manually, or to inject some
            build artifacts in the Model before building the network,
            then you can pass in a ``nengo.builder.Model`` instance.
        """
        if model is None:
            dt = float(dt)  # make sure it's a float (for division purposes)
            self.model = Model(dt=dt,
                               label="%s, dt=%f" % (network, dt),
                               decoder_cache=get_default_decoder_cache())
        else:
            self.model = model

        if network is not None:
            # Build the network into the model
            self.model.build(network)

        self.model.decoder_cache.shrink()

        # -- map from Signal.base -> ndarray
        self.signals = SignalDict(__time__=np.asarray(0.0, dtype=np.float64))
        for op in self.model.operators:
            op.init_signals(self.signals)

        # Order the steps (they are made in `Simulator.reset`)
        self.dg = operator_depencency_graph(self.model.operators)
        self._step_order = [op for op in toposort(self.dg)
                            if hasattr(op, 'make_step')]

        # Add built states to the probe dictionary
        self._probe_outputs = self.model.params

        # Provide a nicer interface to probe outputs
        self.data = ProbeDict(self._probe_outputs)

        seed = np.random.randint(npext.maxint) if seed is None else seed
        self.reset(seed=seed)
Exemple #20
0
def test_hierarchical_seeding():
    """Changes to subnetworks shouldn't affect seeds in top-level network"""
    def create(make_extra, seed):
        objs = []
        with nengo.Network(seed=seed, label="n1") as model:
            objs.append(nengo.Ensemble(10, 1, label="e1"))
            with nengo.Network(label="n2"):
                objs.append(nengo.Ensemble(10, 1, label="e2"))
                if make_extra:
                    # This shouldn't affect any seeds
                    objs.append(nengo.Ensemble(10, 1, label="e3"))
            objs.append(nengo.Ensemble(10, 1, label="e4"))
        return model, objs

    same1, same1objs = create(False, 9)
    same2, same2objs = create(True, 9)
    diff, diffobjs = create(True, 10)

    m1 = Model()
    m1.build(same1)
    same1seeds = m1.seeds

    m2 = Model()
    m2.build(same2)
    same2seeds = m2.seeds

    m3 = Model()
    m3.build(diff)
    diffseeds = m3.seeds

    for diffobj, same2obj in zip(diffobjs, same2objs):
        # These seeds should all be different
        assert diffseeds[diffobj] != same2seeds[same2obj]

    # Skip the extra ensemble
    same2objs = same2objs[:2] + same2objs[3:]

    for same1obj, same2obj in zip(same1objs, same2objs):
        # These seeds should all be the same
        assert same1seeds[same1obj] == same2seeds[same2obj]
Exemple #21
0
class Simulator(object):
    """Reference simulator for Nengo models."""

    def __init__(self, network, dt=0.001, seed=None, model=None):
        """Initialize the simulator with a network and (optionally) a model.

        Most of the time, you will pass in a network and sometimes a dt::

            sim1 = nengo.Simulator(my_network)  # Uses default 0.001s dt
            sim2 = nengo.Simulator(my_network, dt=0.01)  # Uses 0.01s dt

        For more advanced use cases, you can initialize the model yourself,
        and also pass in a network that will be built into the same model
        that you pass in::

            sim = nengo.Simulator(my_network, model=my_model)

        If you want full control over the build process, then you can build
        your network into the model manually. If you do this, then you must
        explicitly pass in ``None`` for the network::

            sim = nengo.Simulator(None, model=my_model)

        Parameters
        ----------
        network : nengo.Network instance or None
            A network object to the built and then simulated.
            If a fully built ``model`` is passed in, then you can skip
            building the network by passing in network=None.
        dt : float, optional
            The length of a simulator timestep, in seconds.
        seed : int, optional
            A seed for all stochastic operators used in this simulator.
        model : nengo.builder.Model instance or None, optional
            A model object that contains build artifacts to be simulated.
            Usually the simulator will build this model for you; however,
            if you want to build the network manually, or to inject some
            build artifacts in the Model before building the network,
            then you can pass in a ``nengo.builder.Model`` instance.
        """
        if model is None:
            dt = float(dt)  # make sure it's a float (for division purposes)
            self.model = Model(dt=dt,
                               label="%s, dt=%f" % (network, dt),
                               decoder_cache=get_default_decoder_cache())
        else:
            self.model = model

        if network is not None:
            # Build the network into the model
            self.model.build(network)

        self.model.decoder_cache.shrink()

        # -- map from Signal.base -> ndarray
        self.signals = SignalDict(__time__=np.asarray(0.0, dtype=np.float64))
        for op in self.model.operators:
            op.init_signals(self.signals)

        # Order the steps (they are made in `Simulator.reset`)
        self.dg = operator_depencency_graph(self.model.operators)
        self._step_order = [op for op in toposort(self.dg)
                            if hasattr(op, 'make_step')]

        # Add built states to the probe dictionary
        self._probe_outputs = self.model.params

        # Provide a nicer interface to probe outputs
        self.data = ProbeDict(self._probe_outputs)

        seed = np.random.randint(npext.maxint) if seed is None else seed
        self.reset(seed=seed)

    @property
    def dt(self):
        """The time step of the simulator"""
        return self.model.dt

    @dt.setter
    def dt(self, dummy):
        raise AttributeError("Cannot change simulator 'dt'. Please file "
                             "an issue at http://github.com/nengo/nengo"
                             "/issues and describe your use case.")

    @property
    def time(self):
        """The current time of the simulator"""
        return self.signals['__time__'].copy()

    def trange(self, dt=None):
        """Create a range of times matching probe data.

        Note that the range does not start at 0 as one might expect, but at
        the first timestep (i.e., dt).

        Parameters
        ----------
        dt : float (optional)
            The sampling period of the probe to create a range for. If empty,
            will use the default probe sampling period.
        """
        dt = self.dt if dt is None else dt
        n_steps = int(self.n_steps * (self.dt / dt))
        return dt * np.arange(1, n_steps + 1)

    def _probe(self):
        """Copy all probed signals to buffers"""
        for probe in self.model.probes:
            period = (1 if probe.sample_every is None else
                      probe.sample_every / self.dt)
            if self.n_steps % period < 1:
                tmp = self.signals[self.model.sig[probe]['in']].copy()
                self._probe_outputs[probe].append(tmp)

    def step(self):
        """Advance the simulator by `self.dt` seconds.
        """
        self.n_steps += 1
        self.signals['__time__'][...] = self.n_steps * self.dt

        old_err = np.seterr(invalid='raise', divide='ignore')
        try:
            for step_fn in self._steps:
                step_fn()
        finally:
            np.seterr(**old_err)

        self._probe()

    def run(self, time_in_seconds, progress_bar=True):
        """Simulate for the given length of time.

        Parameters
        ----------
        steps : int
            Number of steps to run the simulation for.
        progress_bar : bool or ``ProgressBar`` or ``ProgressUpdater``, optional
            Progress bar for displaying the progress.

            By default, ``progress_bar=True``, which uses the default progress
            bar (text in most situations, or an HTML version in recent IPython
            notebooks).

            To disable the progress bar, use ``progress_bar=False``.

            For more control over the progress bar, pass in a
            :class:`nengo.utils.progress.ProgressBar`,
            or :class:`nengo.utils.progress.ProgressUpdater` instance.
        """
        steps = int(np.round(float(time_in_seconds) / self.dt))
        logger.debug("Running %s for %f seconds, or %d steps",
                     self.model.label, time_in_seconds, steps)
        self.run_steps(steps, progress_bar=progress_bar)

    def run_steps(self, steps, progress_bar=True):
        """Simulate for the given number of `dt` steps.

        Parameters
        ----------
        steps : int
            Number of steps to run the simulation for.
        progress_bar : bool or ``ProgressBar`` or ``ProgressUpdater``, optional
            Progress bar for displaying the progress.

            By default, ``progress_bar=True``, which uses the default progress
            bar (text in most situations, or an HTML version in recent IPython
            notebooks).

            To disable the progress bar, use ``progress_bar=False``.

            For more control over the progress bar, pass in a
            :class:`nengo.utils.progress.ProgressBar`,
            or :class:`nengo.utils.progress.ProgressUpdater` instance.
        """
        with ProgressTracker(steps, progress_bar) as progress:
            for i in range(steps):
                self.step()
                progress.step()

    def reset(self, seed=None):
        """Reset the simulator state.

        Parameters
        ----------
        seed : int, optional
            A seed for all stochastic operators used in the simulator.
            This will change the random sequences generated for noise
            or inputs (e.g. from Processes), but not the built objects
            (e.g. ensembles, connections).
        """
        if seed is not None:
            self.seed = seed

        self.n_steps = 0
        self.signals['__time__'][...] = 0

        # reset signals
        for key in self.signals:
            if key != '__time__':
                self.signals.reset(key)

        # rebuild steps (resets ops with their own state, like Processes)
        self.rng = np.random.RandomState(self.seed)
        self._steps = [op.make_step(self.signals, self.dt, self.rng)
                       for op in self._step_order]

        # clear probe data
        for probe in self.model.probes:
            self._probe_outputs[probe] = []
Exemple #22
0
    def __init__(self, network, dt=0.001, seed=None, model=None):
        """Initialize the simulator with a network and (optionally) a model.

        Most of the time, you will pass in a network and sometimes a dt::

            sim1 = nengo.Simulator(my_network)  # Uses default 0.001s dt
            sim2 = nengo.Simulator(my_network, dt=0.01)  # Uses 0.01s dt

        For more advanced use cases, you can initialize the model yourself,
        and also pass in a network that will be built into the same model
        that you pass in::

            sim = nengo.Simulator(my_network, model=my_model)

        If you want full control over the build process, then you can build
        your network into the model manually. If you do this, then you must
        explicitly pass in ``None`` for the network::

            sim = nengo.Simulator(None, model=my_model)

        Parameters
        ----------
        network : nengo.Network instance or None
            A network object to the built and then simulated.
            If a fully built ``model`` is passed in, then you can skip
            building the network by passing in network=None.
        dt : float
            The length of a simulator timestep, in seconds.
        seed : int
            A seed for all stochastic operators used in this simulator.
            Note that there are not stochastic operators implemented
            currently, so this parameters does nothing.
        model : nengo.builder.Model instance or None
            A model object that contains build artifacts to be simulated.
            Usually the simulator will build this model for you; however,
            if you want to build the network manually, or to inject some
            build artifacts in the Model before building the network,
            then you can pass in a ``nengo.builder.Model`` instance.
        """
        self.dt = dt
        if model is None:
            self.model = Model(dt=self.dt,
                               label="%s, dt=%f" % (network.label, dt),
                               seed=network.seed)
        else:
            self.model = model

        if network is not None:
            # Build the network into the model
            Builder.build(network, model=self.model)

        # Use model seed as simulator seed if the seed is not provided
        # Note: seed is not used right now, but one day...
        self.seed = self.model.seed if seed is None else seed

        # -- map from Signal.base -> ndarray
        self.signals = SignalDict(__time__=np.asarray(0.0, dtype=np.float64))
        for op in self.model.operators:
            op.init_signals(self.signals, self.dt)

        self.dg = operator_depencency_graph(self.model.operators)
        self._step_order = [node for node in toposort(self.dg)
                            if hasattr(node, 'make_step')]
        self._steps = [node.make_step(self.signals, self.dt)
                       for node in self._step_order]

        self.n_steps = 0

        # Add built states to the probe dictionary
        self._probe_outputs = self.model.params

        # Provide a nicer interface to probe outputs
        self.data = ProbeDict(self._probe_outputs)
Exemple #23
0
class Simulator(object):
    """Reference simulator for Nengo models."""

    def __init__(self, network, dt=0.001, seed=None, model=None):
        """Initialize the simulator with a network and (optionally) a model.

        Most of the time, you will pass in a network and sometimes a dt::

            sim1 = nengo.Simulator(my_network)  # Uses default 0.001s dt
            sim2 = nengo.Simulator(my_network, dt=0.01)  # Uses 0.01s dt

        For more advanced use cases, you can initialize the model yourself,
        and also pass in a network that will be built into the same model
        that you pass in::

            sim = nengo.Simulator(my_network, model=my_model)

        If you want full control over the build process, then you can build
        your network into the model manually. If you do this, then you must
        explicitly pass in ``None`` for the network::

            sim = nengo.Simulator(None, model=my_model)

        Parameters
        ----------
        network : nengo.Network instance or None
            A network object to the built and then simulated.
            If a fully built ``model`` is passed in, then you can skip
            building the network by passing in network=None.
        dt : float, optional
            The length of a simulator timestep, in seconds.
        seed : int, optional
            A seed for all stochastic operators used in this simulator.
        model : nengo.builder.Model instance or None, optional
            A model object that contains build artifacts to be simulated.
            Usually the simulator will build this model for you; however,
            if you want to build the network manually, or to inject some
            build artifacts in the Model before building the network,
            then you can pass in a ``nengo.builder.Model`` instance.
        """
        self.closed = False

        if model is None:
            dt = float(dt)  # make sure it's a float (for division purposes)
            self.model = Model(dt=dt,
                               label="%s, dt=%f" % (network, dt),
                               decoder_cache=get_default_decoder_cache())
        else:
            self.model = model

        if network is not None:
            # Build the network into the model
            self.model.build(network)

        self.model.decoder_cache.shrink()

        # -- map from Signal.base -> ndarray
        self.signals = SignalDict()
        for op in self.model.operators:
            op.init_signals(self.signals)

        # Order the steps (they are made in `Simulator.reset`)
        self.dg = operator_depencency_graph(self.model.operators)
        self._step_order = [op for op in toposort(self.dg)
                            if hasattr(op, 'make_step')]

        # Add built states to the probe dictionary
        self._probe_outputs = self.model.params

        # Provide a nicer interface to probe outputs
        self.data = ProbeDict(self._probe_outputs)

        seed = np.random.randint(npext.maxint) if seed is None else seed
        self.reset(seed=seed)

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_value, traceback):
        self.close()

    @property
    def dt(self):
        """The time step of the simulator"""
        return self.model.dt

    @dt.setter
    def dt(self, dummy):
        raise ReadonlyError(attr='dt', obj=self)

    def _probe_step_time(self):
        self._n_steps = self.signals[self.model.step].copy()
        self._time = self.signals[self.model.time].copy()

    @property
    def n_steps(self):
        """The current time step of the simulator"""
        return self._n_steps

    @property
    def time(self):
        """The current time of the simulator"""
        return self._time

    def trange(self, dt=None):
        """Create a range of times matching probe data.

        Note that the range does not start at 0 as one might expect, but at
        the first timestep (i.e., dt).

        Parameters
        ----------
        dt : float (optional)
            The sampling period of the probe to create a range for. If empty,
            will use the default probe sampling period.
        """
        dt = self.dt if dt is None else dt
        n_steps = int(self.n_steps * (self.dt / dt))
        return dt * np.arange(1, n_steps + 1)

    def _probe(self):
        """Copy all probed signals to buffers"""
        self._probe_step_time()

        for probe in self.model.probes:
            period = (1 if probe.sample_every is None else
                      probe.sample_every / self.dt)
            if self.n_steps % period < 1:
                tmp = self.signals[self.model.sig[probe]['in']].copy()
                self._probe_outputs[probe].append(tmp)

    def step(self):
        """Advance the simulator by `self.dt` seconds.
        """
        if self.closed:
            raise SimulatorClosed("Simulator cannot run because it is closed.")

        old_err = np.seterr(invalid='raise', divide='ignore')
        try:
            for step_fn in self._steps:
                step_fn()
        finally:
            np.seterr(**old_err)

        self._probe()

    def run(self, time_in_seconds, progress_bar=True):
        """Simulate for the given length of time.

        Parameters
        ----------
        steps : int
            Number of steps to run the simulation for.
        progress_bar : bool or ``ProgressBar`` or ``ProgressUpdater``, optional
            Progress bar for displaying the progress.

            By default, ``progress_bar=True``, which uses the default progress
            bar (text in most situations, or an HTML version in recent IPython
            notebooks).

            To disable the progress bar, use ``progress_bar=False``.

            For more control over the progress bar, pass in a
            :class:`nengo.utils.progress.ProgressBar`,
            or :class:`nengo.utils.progress.ProgressUpdater` instance.
        """
        steps = int(np.round(float(time_in_seconds) / self.dt))
        logger.info("Running %s for %f seconds, or %d steps",
                    self.model.label, time_in_seconds, steps)
        self.run_steps(steps, progress_bar=progress_bar)

    def run_steps(self, steps, progress_bar=True):
        """Simulate for the given number of `dt` steps.

        Parameters
        ----------
        steps : int
            Number of steps to run the simulation for.
        progress_bar : bool or ``ProgressBar`` or ``ProgressUpdater``, optional
            Progress bar for displaying the progress.

            By default, ``progress_bar=True``, which uses the default progress
            bar (text in most situations, or an HTML version in recent IPython
            notebooks).

            To disable the progress bar, use ``progress_bar=False``.

            For more control over the progress bar, pass in a
            :class:`nengo.utils.progress.ProgressBar`,
            or :class:`nengo.utils.progress.ProgressUpdater` instance.
        """
        with ProgressTracker(steps, progress_bar) as progress:
            for i in range(steps):
                self.step()
                progress.step()

    def reset(self, seed=None):
        """Reset the simulator state.

        Parameters
        ----------
        seed : int, optional
            A seed for all stochastic operators used in the simulator.
            This will change the random sequences generated for noise
            or inputs (e.g. from Processes), but not the built objects
            (e.g. ensembles, connections).
        """
        if self.closed:
            raise SimulatorClosed("Cannot reset closed Simulator.")

        if seed is not None:
            self.seed = seed

        # reset signals
        for key in self.signals:
            self.signals.reset(key)

        # rebuild steps (resets ops with their own state, like Processes)
        self.rng = np.random.RandomState(self.seed)
        self._steps = [op.make_step(self.signals, self.dt, self.rng)
                       for op in self._step_order]

        # clear probe data
        for probe in self.model.probes:
            self._probe_outputs[probe] = []

        self._probe_step_time()

    def close(self):
        """Closes the simulator.

        Any call to ``run``, ``run_steps``, ``step``, and ``reset`` on a closed
        simulator will raise ``SimulatorClosed``.
        """
        self.closed = True
        self.signals = None  # signals may no longer exist on some backends
Exemple #24
0
class Simulator:
    r"""Reference simulator for Nengo models.

    The simulator takes a `.Network` and builds internal data structures to
    run the model defined by that network. Run the simulator with the
    `~.Simulator.run` method, and access probed data through the
    ``data`` attribute.

    Building and running the simulation may allocate resources like files
    and sockets. To properly free these resources, call the `.Simulator.close`
    method. Alternatively, `.Simulator.close` will automatically be called
    if you use the ``with`` syntax:

    .. testcode::

       with nengo.Network() as net:
           ensemble = nengo.Ensemble(10, 1)
       with nengo.Simulator(net, progress_bar=False) as sim:
           sim.run(0.1)

    Note that the ``data`` attribute is still accessible even when a simulator
    has been closed. Running the simulator, however, will raise an error.

    When debugging or comparing models, it can be helpful to see the full ordered
    list of operators that the simulator will execute on each timestep.

    .. testcode::

       with nengo.Simulator(nengo.Network(), progress_bar=False) as sim:
           print('\n'.join("* %s" % op for op in sim.step_order))

    .. testoutput::

       * TimeUpdate{}

    The diff of two simulators' sorted ops tells us how two built models differ.
    We can use ``difflib`` in the Python standard library to see the differences.

    .. testcode::

       # Original model
       with nengo.Network() as net:
           ensemble = nengo.Ensemble(10, 1, label="Ensemble")
       sim1 = nengo.Simulator(net, progress_bar=False)

       # Add a node
       with net:
           node = nengo.Node(output=0, label="Node")
           nengo.Connection(node, ensemble)
       sim2 = nengo.Simulator(net, progress_bar=False)

       import difflib

       print("".join(difflib.unified_diff(
           sorted("%s: %s\n" % (type(op).__name__, op.tag) for op in sim1.step_order),
           sorted("%s: %s\n" % (type(op).__name__, op.tag) for op in sim2.step_order),
           fromfile="sim1",
           tofile="sim2",
           n=0,
       )).strip())

       sim1.close()
       sim2.close()

    .. testoutput::
       :options:

       --- sim1
       +++ sim2
       @@ -0,0 +1 @@
       +Copy: <Connection from <Node "Node"> to <Ensemble "Ensemble">>
       @@ -4,0 +6 @@
       +SimProcess: Lowpass(tau=0.005)

    Parameters
    ----------
    network : Network or None
        A network object to be built and then simulated. If None,
        then a `.Model` with the build model must be provided instead.
    dt : float, optional
        The length of a simulator timestep, in seconds.
    seed : int, optional
        A seed for all stochastic operators used in this simulator.
        Will be set to ``network.seed + 1`` if not given.
    model : Model, optional
        A `.Model` that contains build artifacts to be simulated.
        Usually the simulator will build this model for you; however, if you
        want to build the network manually, or you want to inject build
        artifacts in the model before building the network, then you can
        pass in a `.Model` instance.
    progress_bar : bool or ProgressBar, optional
        Progress bar for displaying build and simulation progress.

        If ``True``, the default progress bar will be used.
        If ``False``, the progress bar will be disabled.
        For more control over the progress bar, pass in a ``ProgressBar``
        instance.
    optimize : bool, optional
        If ``True``, the builder will run an additional optimization step
        that can speed up simulations significantly at the cost of slower
        builds. If running models for very small amounts of time,
        pass ``False`` to disable the optimizer.

    Attributes
    ----------
    closed : bool
        Whether the simulator has been closed.
        Once closed, it cannot be reopened.
    data : SimulationData
        The `.SimulationData` mapping from Nengo objects to the data associated
        with those objects. In particular, each `.Probe` maps to the data
        probed while running the simulation.
    dg : dict
        A dependency graph mapping from each `.Operator` to the operators
        that depend on that operator.
    model : Model
        The `.Model` containing the signals and operators necessary to
        simulate the network.
    signals : SignalDict
        The `.SignalDict` mapping from `.Signal` instances to NumPy arrays.

    """
    def __init__(self,
                 network,
                 dt=0.001,
                 seed=None,
                 model=None,
                 progress_bar=True,
                 optimize=True):
        self.closed = True  # Start closed in case constructor raises exception
        self.progress_bar = progress_bar
        self.optimize = optimize

        if model is None:
            self.model = Model(
                dt=float(dt),
                label="%s, dt=%f" % (network, dt),
                decoder_cache=get_default_decoder_cache(),
            )
        else:
            self.model = model

        pt = ProgressTracker(progress_bar, Progress("Building", "Build"))
        with pt:
            if network is not None:
                # Build the network into the model
                self.model.build(network,
                                 progress=pt.next_stage("Building", "Build"))

            # Order the steps (they are made in `Simulator.reset`)
            self.dg = operator_dependency_graph(self.model.operators)

            if optimize:
                with pt.next_stage("Building (running optimizer)",
                                   "Optimization"):
                    opmerge_optimize(self.model, self.dg)

        self._step_order = [
            op for op in toposort(self.dg) if hasattr(op, "make_step")
        ]

        # -- map from Signal.base -> ndarray
        self.signals = SignalDict()
        for op in self.model.operators:
            op.init_signals(self.signals)

        # Add built states to the raw simulation data dictionary
        self._sim_data = self.model.params

        # Provide a nicer interface to simulation data
        self.data = SimulationData(self._sim_data)

        if seed is None:
            if network is not None and network.seed is not None:
                seed = network.seed + 1
            else:
                seed = np.random.randint(npext.maxint)

        self.closed = False
        self.reset(seed=seed)

    def __del__(self):
        """Raise a ResourceWarning if we are deallocated while open."""
        if not self.closed:
            warnings.warn(
                "Simulator with model=%s was deallocated while open. Please "
                "close simulators manually to ensure resources are properly "
                "freed." % self.model,
                ResourceWarning,
            )

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_value, traceback):
        self.close()

    def __getstate__(self):
        signals = ({k: v
                    for k, v in self.signals.items()
                    if not k.readonly} if self.signals is not None else {})
        probe_outputs = {
            probe: self._sim_data[probe]
            for probe in self.model.probes
        }
        return dict(
            model=self.model,
            signals=signals,
            probe_outputs=probe_outputs,
            dt=self.dt,
            seed=self.seed,
            progress_bar=self.progress_bar,
            optimize=self.optimize,
            closed=self.closed,
        )

    def __setstate__(self, state):
        self.__init__(
            network=None,
            model=state["model"],
            dt=state["dt"],
            seed=state["seed"],
            progress_bar=state["progress_bar"],
            optimize=False,  # The pickled Sim will have already been optimized
        )
        for key, value in state["signals"].items():
            self.signals[key] = value
        for key, value in state["probe_outputs"].items():
            self._sim_data[key].extend(value)
        # Set whether it had originally been optimized
        self.optimize = state["optimize"]
        if state["closed"]:
            self.close()

    @property
    def dt(self):
        """(float) The time step of the simulator."""
        return self.model.dt

    @dt.setter
    def dt(self, dummy):
        raise ReadonlyError(attr="dt", obj=self)

    @property
    def n_steps(self):
        """(int) The current time step of the simulator."""
        return self._n_steps

    @property
    def step_order(self):
        """(list) The ordered list of step functions run by this simulator."""
        return self._step_order

    @property
    def time(self):
        """(float) The current time of the simulator."""
        return self._time

    def clear_probes(self):
        """Clear all probe histories.

        .. versionadded:: 3.0.0
        """
        for probe in self.model.probes:
            self._sim_data[probe] = []
        self.data.reset()  # clear probe cache

    def close(self):
        """Closes the simulator.

        Any call to `.Simulator.run`, `.Simulator.run_steps`,
        `.Simulator.step`, and `.Simulator.reset` on a closed simulator raises
        a `.SimulatorClosed` exception.
        """
        self.closed = True
        self.signals = None  # signals may no longer exist on some backends

    def _probe(self):
        """Copy all probed signals to buffers."""
        self._probe_step_time()

        for probe in self.model.probes:
            period = 1 if probe.sample_every is None else probe.sample_every / self.dt
            if self.n_steps % period < 1:
                tmp = self.signals[self.model.sig[probe]["in"]].copy()
                self._sim_data[probe].append(tmp)

    def _probe_step_time(self):
        self._n_steps = self.signals[self.model.step].item()
        self._time = self.signals[self.model.time].item()

    def reset(self, seed=None):
        """Reset the simulator state.

        Parameters
        ----------
        seed : int, optional
            A seed for all stochastic operators used in the simulator.
            This will change the random sequences generated for noise
            or inputs (e.g. from processes), but not the built objects
            (e.g. ensembles, connections).
        """
        if self.closed:
            raise SimulatorClosed("Cannot reset closed Simulator.")

        if seed is not None:
            self.seed = seed

        # reset signals
        for key in self.signals:
            self.signals.reset(key)

        # rebuild steps (resets ops with their own state, like Processes)
        self.rng = np.random.RandomState(self.seed)
        self._steps = [
            op.make_step(self.signals, self.dt, self.rng)
            for op in self._step_order
        ]

        self.clear_probes()

        self._probe_step_time()

    def run(self, time_in_seconds, progress_bar=None):
        """Simulate for the given length of time.

        If the given length of time is not a multiple of ``dt``,
        it will be rounded to the nearest ``dt``. For example, if ``dt``
        is 0.001 and ``run`` is called with ``time_in_seconds=0.0006``,
        the simulator will advance one timestep, resulting in the actual
        simulator time being 0.001.

        The given length of time must be positive. The simulator cannot
        be run backwards.

        Parameters
        ----------
        time_in_seconds : float
            Amount of time to run the simulation for. Must be positive.
        progress_bar : bool or ProgressBar, optional
            Progress bar for displaying the progress of the simulation run.

            If True, the default progress bar will be used.
            If False, the progress bar will be disabled.
            For more control over the progress bar, pass in a ``ProgressBar``
            instance.
        """
        if time_in_seconds < 0:
            raise ValidationError("Must be positive (got %g)" %
                                  (time_in_seconds, ),
                                  attr="time_in_seconds")

        steps = int(np.round(float(time_in_seconds) / self.dt))

        if steps == 0:
            warnings.warn("%g results in running for 0 timesteps. Simulator "
                          "still at time %g." % (time_in_seconds, self.time))
        else:
            logger.info(
                "Running %s for %f seconds, or %d steps",
                self.model.label,
                time_in_seconds,
                steps,
            )
            self.run_steps(steps, progress_bar=progress_bar)

    def run_steps(self, steps, progress_bar=None):
        """Simulate for the given number of ``dt`` steps.

        Parameters
        ----------
        steps : int
            Number of steps to run the simulation for.
        progress_bar : bool or ProgressBar, optional
            Progress bar for displaying the progress of the simulation run.

            If True, the default progress bar will be used.
            If False, the progress bar will be disabled.
            For more control over the progress bar, pass in a ``ProgressBar``
            instance.
        """
        if progress_bar is None:
            progress_bar = self.progress_bar

        with ProgressTracker(progress_bar,
                             Progress("Simulating", "Simulation",
                                      steps)) as pt:
            for i in range(steps):
                self.step()
                pt.total_progress.step()

    def step(self):
        """Advance the simulator by 1 step (``dt`` seconds)."""
        if self.closed:
            raise SimulatorClosed("Simulator cannot run because it is closed.")

        old_err = np.seterr(invalid="raise", divide="ignore")
        try:
            for step_fn in self._steps:
                step_fn()
        finally:
            np.seterr(**old_err)

        self._probe()

    def trange(self, dt=None, sample_every=None):
        """Create a vector of times matching probed data.

        Note that the range does not start at 0 as one might expect, but at
        the first timestep (i.e., ``dt``).

        Parameters
        ----------
        sample_every : float, optional
            The sampling period of the probe to create a range for.
            If None, a time value for every ``dt`` will be produced.

            .. versionchanged:: 3.0.0
               Renamed from dt to sample_every
        """
        if dt is not None:
            if sample_every is not None:
                raise ValidationError(
                    "Cannot specify both `dt` and `sample_every`. "
                    "Use `sample_every` only.",
                    attr="dt",
                    obj=self,
                )
            warnings.warn("`dt` is deprecated. Use `sample_every` instead.",
                          DeprecationWarning)
            sample_every = dt
        period = 1 if sample_every is None else sample_every / self.dt
        steps = np.arange(1, self.n_steps + 1)
        return self.dt * steps[steps % period < 1]
Exemple #25
0
class Simulator(object):
    """Reference simulator for Nengo models.

    The simulator takes a `.Network` and builds internal data structures to
    run the model defined by that network. Run the simulator with the
    `~.Simulator.run` method, and access probed data through the
    ``data`` attribute.

    Building and running the simulation may allocate resources like files
    and sockets. To properly free these resources, call the `.Simulator.close`
    method. Alternatively, `.Simulator.close` will automatically be called
    if you use the ``with`` syntax::

        with nengo.Simulator(my_network) as sim:
            sim.run(0.1)
        print(sim.data[my_probe])

    Note that the ``data`` attribute is still accessible even when a simulator
    has been closed. Running the simulator, however, will raise an error.

    Parameters
    ----------
    network : Network or None
        A network object to be built and then simulated. If None,
        then a `.Model` with the build model must be provided instead.
    dt : float, optional (Default: 0.001)
        The length of a simulator timestep, in seconds.
    seed : int, optional (Default: None)
        A seed for all stochastic operators used in this simulator.
        Will be set to ``network.seed + 1`` if not given.
    model : Model, optional (Default: None)
        A `.Model` that contains build artifacts to be simulated.
        Usually the simulator will build this model for you; however, if you
        want to build the network manually, or you want to inject build
        artifacts in the model before building the network, then you can
        pass in a `.Model` instance.
    progress_bar : bool or `.ProgressBar` or `.ProgressUpdater`, optional \
                   (Default: True)
        Progress bar for displaying build and simulation progress.

        If ``True``, the default progress bar will be used.
        If ``False``, the progress bar will be disabled.
        For more control over the progress bar, pass in a `.ProgressBar`
        or `.ProgressUpdater` instance.
    optimize : bool, optional (Default: True)
        If ``True``, the builder will run an additional optimization step
        that can speed up simulations signficantly at the cost of slower
        builds. If running models for very small amounts of time,
        pass ``False`` to disable the optimizer.

    Attributes
    ----------
    closed : bool
        Whether the simulator has been closed.
        Once closed, it cannot be reopened.
    data : ProbeDict
        The `.ProbeDict` mapping from Nengo objects to the data associated
        with those objects. In particular, each `.Probe` maps to the data
        probed while running the simulation.
    dg : dict
        A dependency graph mapping from each `.Operator` to the operators
        that depend on that operator.
    model : Model
        The `.Model` containing the signals and operators necessary to
        simulate the network.
    signals : SignalDict
        The `.SignalDict` mapping from `.Signal` instances to NumPy arrays.

    """

    # 'unsupported' defines features unsupported by a simulator.
    # The format is a list of tuples of the form `(test, reason)` with `test`
    # being a string with wildcards (*, ?, [abc], [!abc]) matched against Nengo
    # test paths and names, and `reason` is a string describing why the feature
    # is not supported by the backend. For example:
    #     unsupported = [('test_pes*', 'PES rule not implemented')]
    # would skip all test whose names start with 'test_pes'.
    unsupported = []

    def __init__(self,
                 network,
                 dt=0.001,
                 seed=None,
                 model=None,
                 progress_bar=True,
                 optimize=True):
        self.closed = True  # Start closed in case constructor raises exception
        self.progress_bar = progress_bar

        if model is None:
            self.model = Model(dt=float(dt),
                               label="%s, dt=%f" % (network, dt),
                               decoder_cache=get_default_decoder_cache())
        else:
            self.model = model

        if network is not None:
            # Build the network into the model
            self.model.build(network, progress_bar=self.progress_bar)

        # Order the steps (they are made in `Simulator.reset`)
        self.dg = operator_dependency_graph(self.model.operators)

        if optimize:
            opmerge_optimize(self.model, self.dg)

        self._step_order = [
            op for op in toposort(self.dg) if hasattr(op, 'make_step')
        ]

        # -- map from Signal.base -> ndarray
        self.signals = SignalDict()
        for op in self.model.operators:
            op.init_signals(self.signals)

        # Add built states to the probe dictionary
        self._probe_outputs = self.model.params

        # Provide a nicer interface to probe outputs
        self.data = ProbeDict(self._probe_outputs)

        if seed is None:
            if network is not None and network.seed is not None:
                seed = network.seed + 1
            else:
                seed = np.random.randint(npext.maxint)

        self.closed = False
        self.reset(seed=seed)

    def __del__(self):
        """Raise a ResourceWarning if we are deallocated while open."""
        if not self.closed:
            warnings.warn(
                "Simulator with model=%s was deallocated while open. Please "
                "close simulators manually to ensure resources are properly "
                "freed." % self.model, ResourceWarning)

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_value, traceback):
        self.close()

    @property
    def dt(self):
        """(float) The time step of the simulator."""
        return self.model.dt

    @dt.setter
    def dt(self, dummy):
        raise ReadonlyError(attr='dt', obj=self)

    @property
    def n_steps(self):
        """(int) The current time step of the simulator."""
        return self._n_steps

    @property
    def time(self):
        """(float) The current time of the simulator."""
        return self._time

    def close(self):
        """Closes the simulator.

        Any call to `.Simulator.run`, `.Simulator.run_steps`,
        `.Simulator.step`, and `.Simulator.reset` on a closed simulator raises
        a `.SimulatorClosed` exception.
        """
        self.closed = True
        self.signals = None  # signals may no longer exist on some backends

    def _probe(self):
        """Copy all probed signals to buffers."""
        self._probe_step_time()

        for probe in self.model.probes:
            period = (1 if probe.sample_every is None else probe.sample_every /
                      self.dt)
            if self.n_steps % period < 1:
                tmp = self.signals[self.model.sig[probe]['in']].copy()
                self._probe_outputs[probe].append(tmp)

    def _probe_step_time(self):
        self._n_steps = self.signals[self.model.step].item()
        self._time = self.signals[self.model.time].item()

    def reset(self, seed=None):
        """Reset the simulator state.

        Parameters
        ----------
        seed : int, optional
            A seed for all stochastic operators used in the simulator.
            This will change the random sequences generated for noise
            or inputs (e.g. from processes), but not the built objects
            (e.g. ensembles, connections).
        """
        if self.closed:
            raise SimulatorClosed("Cannot reset closed Simulator.")

        if seed is not None:
            self.seed = seed

        # reset signals
        for key in self.signals:
            self.signals.reset(key)

        # rebuild steps (resets ops with their own state, like Processes)
        self.rng = np.random.RandomState(self.seed)
        self._steps = [
            op.make_step(self.signals, self.dt, self.rng)
            for op in self._step_order
        ]

        # clear probe data
        for probe in self.model.probes:
            self._probe_outputs[probe] = []
        self.data.reset()

        self._probe_step_time()

    def run(self, time_in_seconds, progress_bar=None):
        """Simulate for the given length of time.

        If the given length of time is not a multiple of ``dt``,
        it will be rounded to the nearest ``dt``. For example, if ``dt``
        is 0.001 and ``run`` is called with ``time_in_seconds=0.0006``,
        the simulator will advance one timestep, resulting in the actual
        simulator time being 0.001.

        The given length of time must be positive. The simulator cannot
        be run backwards.

        Parameters
        ----------
        time_in_seconds : float
            Amount of time to run the simulation for. Must be positive.
        progress_bar : bool or `.ProgressBar` or `.ProgressUpdater`, optional \
                       (Default: True)
            Progress bar for displaying the progress of the simulation run.

            If True, the default progress bar will be used.
            If False, the progress bar will be disabled.
            For more control over the progress bar, pass in a `.ProgressBar`
            or `.ProgressUpdater` instance.
        """
        if time_in_seconds < 0:
            raise ValidationError("Must be positive (got %g)" %
                                  (time_in_seconds, ),
                                  attr="time_in_seconds")

        steps = int(np.round(float(time_in_seconds) / self.dt))

        if steps == 0:
            warnings.warn("%g results in running for 0 timesteps. Simulator "
                          "still at time %g." % (time_in_seconds, self.time))
        else:
            logger.info("Running %s for %f seconds, or %d steps",
                        self.model.label, time_in_seconds, steps)
            self.run_steps(steps, progress_bar=progress_bar)

    def run_steps(self, steps, progress_bar=None):
        """Simulate for the given number of ``dt`` steps.

        Parameters
        ----------
        steps : int
            Number of steps to run the simulation for.
        progress_bar : bool or `.ProgressBar` or `.ProgressUpdater`, optional \
                       (Default: True)
            Progress bar for displaying the progress of the simulation run.

            If True, the default progress bar will be used.
            If False, the progress bar will be disabled.
            For more control over the progress bar, pass in a `.ProgressBar`
            or `.ProgressUpdater` instance.
        """
        if progress_bar is None:
            progress_bar = self.progress_bar
        with ProgressTracker(steps, progress_bar, "Simulating") as progress:
            for i in range(steps):
                self.step()
                progress.step()

    def step(self):
        """Advance the simulator by 1 step (``dt`` seconds)."""
        if self.closed:
            raise SimulatorClosed("Simulator cannot run because it is closed.")

        old_err = np.seterr(invalid='raise', divide='ignore')
        try:
            for step_fn in self._steps:
                step_fn()
        finally:
            np.seterr(**old_err)

        self._probe()

    def trange(self, dt=None):
        """Create a vector of times matching probed data.

        Note that the range does not start at 0 as one might expect, but at
        the first timestep (i.e., ``dt``).

        Parameters
        ----------
        dt : float, optional (Default: None)
            The sampling period of the probe to create a range for.
            If None, the simulator's ``dt`` will be used.
        """
        dt = self.dt if dt is None else dt
        n_steps = int(self.n_steps * (self.dt / dt))
        return dt * np.arange(1, n_steps + 1)
Exemple #26
0
class Simulator(object):
    """Reference simulator for Nengo models."""

    def __init__(self, network, dt=0.001, seed=None, model=None):
        """Initialize the simulator with a network and (optionally) a model.

        Most of the time, you will pass in a network and sometimes a dt::

            sim1 = nengo.Simulator(my_network)  # Uses default 0.001s dt
            sim2 = nengo.Simulator(my_network, dt=0.01)  # Uses 0.01s dt

        For more advanced use cases, you can initialize the model yourself,
        and also pass in a network that will be built into the same model
        that you pass in::

            sim = nengo.Simulator(my_network, model=my_model)

        If you want full control over the build process, then you can build
        your network into the model manually. If you do this, then you must
        explicitly pass in ``None`` for the network::

            sim = nengo.Simulator(None, model=my_model)

        Parameters
        ----------
        network : nengo.Network instance or None
            A network object to the built and then simulated.
            If a fully built ``model`` is passed in, then you can skip
            building the network by passing in network=None.
        dt : float
            The length of a simulator timestep, in seconds.
        seed : int
            A seed for all stochastic operators used in this simulator.
            Note that there are not stochastic operators implemented
            currently, so this parameters does nothing.
        model : nengo.builder.Model instance or None
            A model object that contains build artifacts to be simulated.
            Usually the simulator will build this model for you; however,
            if you want to build the network manually, or to inject some
            build artifacts in the Model before building the network,
            then you can pass in a ``nengo.builder.Model`` instance.
        """
        dt = float(dt)  # make sure it's a float (for division purposes)

        if model is None:
            self.model = Model(dt=dt,
                               label="%s, dt=%f" % (network, dt),
                               decoder_cache=get_default_decoder_cache())
        else:
            self.model = model

        if network is not None:
            # Build the network into the model
            self.model.build(network)

        self.model.decoder_cache.shrink()

        self.seed = np.random.randint(npext.maxint) if seed is None else seed
        self.rng = np.random.RandomState(self.seed)

        # -- map from Signal.base -> ndarray
        self.signals = SignalDict(__time__=np.asarray(0.0, dtype=np.float64))
        for op in self.model.operators:
            op.init_signals(self.signals)

        self.dg = operator_depencency_graph(self.model.operators)
        self._step_order = [node for node in toposort(self.dg)
                            if hasattr(node, 'make_step')]
        self._steps = [node.make_step(self.signals, dt, self.rng)
                       for node in self._step_order]

        # Add built states to the probe dictionary
        self._probe_outputs = self.model.params

        # Provide a nicer interface to probe outputs
        self.data = ProbeDict(self._probe_outputs)

        self.reset()

    @property
    def dt(self):
        """The time step of the simulator"""
        return self.model.dt

    @dt.setter
    def dt(self, dummy):
        raise AttributeError("Cannot change simulator 'dt'. Please file "
                             "an issue at http://github.com/ctn-waterloo/nengo"
                             "/issues and describe your use case.")

    @property
    def time(self):
        """The current time of the simulator"""
        return self.signals['__time__'].copy()

    def trange(self, dt=None):
        """Create a range of times matching probe data.

        Parameters
        ----------
        dt : float (optional)
            The sampling period of the probe to create a range for. If empty,
            will use the default probe sampling period.
        """
        dt = self.dt if dt is None else dt
        n_steps = int(self.n_steps * (self.dt / dt))
        return dt * np.arange(1, n_steps + 1)

    def _probe(self):
        """Copy all probed signals to buffers"""
        for probe in self.model.probes:
            period = (1 if probe.sample_every is None else
                      probe.sample_every / self.dt)
            if self.n_steps % period < 1:
                tmp = self.signals[self.model.sig[probe]['in']].copy()
                self._probe_outputs[probe].append(tmp)

    def step(self):
        """Advance the simulator by `self.dt` seconds.
        """
        self.n_steps += 1
        self.signals['__time__'][...] = self.n_steps * self.dt

        old_err = np.seterr(invalid='raise', divide='ignore')
        try:
            for step_fn in self._steps:
                step_fn()
        finally:
            np.seterr(**old_err)

        self._probe()

    def run(self, time_in_seconds):
        """Simulate for the given length of time."""
        steps = int(np.round(float(time_in_seconds) / self.dt))
        logger.debug("Running %s for %f seconds, or %d steps",
                     self.model.label, time_in_seconds, steps)
        self.run_steps(steps)

    def run_steps(self, steps):
        """Simulate for the given number of `dt` steps."""
        for i in range(steps):
            if i % 1000 == 0:
                logger.debug("Step %d", i)
            self.step()

    def reset(self):
        """Reset the simulator state."""
        self.n_steps = 0
        self.signals['__time__'][...] = 0

        for key in self.signals:
            if key != '__time__':
                self.signals.reset(key)

        for probe in self.model.probes:
            self._probe_outputs[probe] = []
Exemple #27
0
class Simulator(object):
    """Reference simulator for Nengo models."""

    # 'unsupported' defines features unsupported by a simulator.
    # The format is a list of tuples of the form `(test, reason)` with `test`
    # being a string with wildcards (*, ?, [abc], [!abc]) matched against Nengo
    # test paths and names, and `reason` is a string describing why the feature
    # is not supported by the backend. For example:
    #     unsupported = [('test_pes*', 'PES rule not implemented')]
    # would skip all test whose names start with 'test_pes'.
    unsupported = []

    def __init__(self, network, dt=0.001, seed=None, model=None):
        """Initialize the simulator with a network and (optionally) a model.

        Most of the time, you will pass in a network and sometimes a dt::

            sim1 = nengo.Simulator(my_network)  # Uses default 0.001s dt
            sim2 = nengo.Simulator(my_network, dt=0.01)  # Uses 0.01s dt

        For more advanced use cases, you can initialize the model yourself,
        and also pass in a network that will be built into the same model
        that you pass in::

            sim = nengo.Simulator(my_network, model=my_model)

        If you want full control over the build process, then you can build
        your network into the model manually. If you do this, then you must
        explicitly pass in ``None`` for the network::

            sim = nengo.Simulator(None, model=my_model)

        Parameters
        ----------
        network : nengo.Network instance or None
            A network object to the built and then simulated.
            If a fully built ``model`` is passed in, then you can skip
            building the network by passing in network=None.
        dt : float, optional
            The length of a simulator timestep, in seconds.
        seed : int, optional
            A seed for all stochastic operators used in this simulator.
        model : nengo.builder.Model instance or None, optional
            A model object that contains build artifacts to be simulated.
            Usually the simulator will build this model for you; however,
            if you want to build the network manually, or to inject some
            build artifacts in the Model before building the network,
            then you can pass in a ``nengo.builder.Model`` instance.
        """
        self.closed = False

        if model is None:
            dt = float(dt)  # make sure it's a float (for division purposes)
            self.model = Model(dt=dt,
                               label="%s, dt=%f" % (network, dt),
                               decoder_cache=get_default_decoder_cache())
        else:
            self.model = model

        if network is not None:
            # Build the network into the model
            self.model.build(network)

        self.model.decoder_cache.shrink()

        # -- map from Signal.base -> ndarray
        self.signals = SignalDict()
        for op in self.model.operators:
            op.init_signals(self.signals)

        # Order the steps (they are made in `Simulator.reset`)
        self.dg = operator_depencency_graph(self.model.operators)
        self._step_order = [op for op in toposort(self.dg)
                            if hasattr(op, 'make_step')]

        # Add built states to the probe dictionary
        self._probe_outputs = self.model.params

        # Provide a nicer interface to probe outputs
        self.data = ProbeDict(self._probe_outputs)

        seed = np.random.randint(npext.maxint) if seed is None else seed
        self.reset(seed=seed)

    def __del__(self):
        """Raise a ResourceWarning if we are deallocated while open."""
        if not self.closed:
            warnings.warn(
                "Simulator with model=%s was deallocated while open. Please "
                "close simulators manually to ensure resources are properly "
                "freed." % self.model, ResourceWarning)

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_value, traceback):
        self.close()

    @property
    def dt(self):
        """The time step of the simulator"""
        return self.model.dt

    @dt.setter
    def dt(self, dummy):
        raise ReadonlyError(attr='dt', obj=self)

    def _probe_step_time(self):
        self._n_steps = self.signals[self.model.step].copy()
        self._time = self.signals[self.model.time].copy()

    @property
    def n_steps(self):
        """The current time step of the simulator"""
        return self._n_steps

    @property
    def time(self):
        """The current time of the simulator"""
        return self._time

    def trange(self, dt=None):
        """Create a range of times matching probe data.

        Note that the range does not start at 0 as one might expect, but at
        the first timestep (i.e., dt).

        Parameters
        ----------
        dt : float (optional)
            The sampling period of the probe to create a range for. If empty,
            will use the default probe sampling period.
        """
        dt = self.dt if dt is None else dt
        n_steps = int(self.n_steps * (self.dt / dt))
        return dt * np.arange(1, n_steps + 1)

    def _probe(self):
        """Copy all probed signals to buffers"""
        self._probe_step_time()

        for probe in self.model.probes:
            period = (1 if probe.sample_every is None else
                      probe.sample_every / self.dt)
            if self.n_steps % period < 1:
                tmp = self.signals[self.model.sig[probe]['in']].copy()
                self._probe_outputs[probe].append(tmp)

    def step(self):
        """Advance the simulator by `self.dt` seconds.
        """
        if self.closed:
            raise SimulatorClosed("Simulator cannot run because it is closed.")

        old_err = np.seterr(invalid='raise', divide='ignore')
        try:
            for step_fn in self._steps:
                step_fn()
        finally:
            np.seterr(**old_err)

        self._probe()

    def run(self, time_in_seconds, progress_bar=True):
        """Simulate for the given length of time.

        Parameters
        ----------
        steps : int
            Number of steps to run the simulation for.
        progress_bar : bool or ``ProgressBar`` or ``ProgressUpdater``, optional
            Progress bar for displaying the progress.

            By default, ``progress_bar=True``, which uses the default progress
            bar (text in most situations, or an HTML version in recent IPython
            notebooks).

            To disable the progress bar, use ``progress_bar=False``.

            For more control over the progress bar, pass in a
            :class:`nengo.utils.progress.ProgressBar`,
            or :class:`nengo.utils.progress.ProgressUpdater` instance.
        """
        steps = int(np.round(float(time_in_seconds) / self.dt))
        logger.info("Running %s for %f seconds, or %d steps",
                    self.model.label, time_in_seconds, steps)
        self.run_steps(steps, progress_bar=progress_bar)

    def run_steps(self, steps, progress_bar=True):
        """Simulate for the given number of `dt` steps.

        Parameters
        ----------
        steps : int
            Number of steps to run the simulation for.
        progress_bar : bool or ``ProgressBar`` or ``ProgressUpdater``, optional
            Progress bar for displaying the progress.

            By default, ``progress_bar=True``, which uses the default progress
            bar (text in most situations, or an HTML version in recent IPython
            notebooks).

            To disable the progress bar, use ``progress_bar=False``.

            For more control over the progress bar, pass in a
            :class:`nengo.utils.progress.ProgressBar`,
            or :class:`nengo.utils.progress.ProgressUpdater` instance.
        """
        with ProgressTracker(steps, progress_bar) as progress:
            for i in range(steps):
                self.step()
                progress.step()

    def reset(self, seed=None):
        """Reset the simulator state.

        Parameters
        ----------
        seed : int, optional
            A seed for all stochastic operators used in the simulator.
            This will change the random sequences generated for noise
            or inputs (e.g. from Processes), but not the built objects
            (e.g. ensembles, connections).
        """
        if self.closed:
            raise SimulatorClosed("Cannot reset closed Simulator.")

        if seed is not None:
            self.seed = seed

        # reset signals
        for key in self.signals:
            self.signals.reset(key)

        # rebuild steps (resets ops with their own state, like Processes)
        self.rng = np.random.RandomState(self.seed)
        self._steps = [op.make_step(self.signals, self.dt, self.rng)
                       for op in self._step_order]

        # clear probe data
        for probe in self.model.probes:
            self._probe_outputs[probe] = []

        self._probe_step_time()

    def close(self):
        """Closes the simulator.

        Any call to ``run``, ``run_steps``, ``step``, and ``reset`` on a closed
        simulator will raise ``SimulatorClosed``.
        """
        self.closed = True
        self.signals = None  # signals may no longer exist on some backends
Exemple #28
0
class Simulator(object):
    """Reference simulator for Nengo models.

    The simulator takes a `.Network` and builds internal data structures to
    run the model defined by that network. Run the simulator with the
    `~.Simulator.run` method, and access probed data through the
    ``data`` attribute.

    Building and running the simulation may allocate resources like files
    and sockets. To properly free these resources, call the `.Simulator.close`
    method. Alternatively, `.Simulator.close` will automatically be called
    if you use the ``with`` syntax::

        with nengo.Simulator(my_network) as sim:
            sim.run(0.1)
        print(sim.data[my_probe])

    Note that the ``data`` attribute is still accessible even when a simulator
    has been closed. Running the simulator, however, will raise an error.

    Parameters
    ----------
    network : Network or None
        A network object to be built and then simulated. If None,
        then a `.Model` with the build model must be provided instead.
    dt : float, optional (Default: 0.001)
        The length of a simulator timestep, in seconds.
    seed : int, optional (Default: None)
        A seed for all stochastic operators used in this simulator.
    model : Model, optional (Default: None)
        A `.Model` that contains build artifacts to be simulated.
        Usually the simulator will build this model for you; however, if you
        want to build the network manually, or you want to inject build
        artifacts in the model before building the network, then you can
        pass in a `.Model` instance.

    Attributes
    ----------
    closed : bool
        Whether the simulator has been closed.
        Once closed, it cannot be reopened.
    data : ProbeDict
        The `.ProbeDict` mapping from Nengo objects to the data associated
        with those objects. In particular, each `.Probe` maps to the data
        probed while running the simulation.
    dg : dict
        A dependency graph mapping from each `.Operator` to the operators
        that depend on that operator.
    model : Model
        The `.Model` containing the signals and operators necessary to
        simulate the network.
    signals : SignalDict
        The `.SignalDict` mapping from `.Signal` instances to NumPy arrays.

    """

    # 'unsupported' defines features unsupported by a simulator.
    # The format is a list of tuples of the form `(test, reason)` with `test`
    # being a string with wildcards (*, ?, [abc], [!abc]) matched against Nengo
    # test paths and names, and `reason` is a string describing why the feature
    # is not supported by the backend. For example:
    #     unsupported = [('test_pes*', 'PES rule not implemented')]
    # would skip all test whose names start with 'test_pes'.
    unsupported = []

    def __init__(self, network, dt=0.001, seed=None, model=None):
        self.closed = False

        if model is None:
            dt = float(dt)  # make sure it's a float (for division purposes)
            self.model = Model(dt=dt,
                               label="%s, dt=%f" % (network, dt),
                               decoder_cache=get_default_decoder_cache())
        else:
            self.model = model

        if network is not None:
            # Build the network into the model
            self.model.build(network)

        self.model.decoder_cache.shrink()

        # -- map from Signal.base -> ndarray
        self.signals = SignalDict()
        for op in self.model.operators:
            op.init_signals(self.signals)

        # Order the steps (they are made in `Simulator.reset`)
        self.dg = operator_depencency_graph(self.model.operators)
        self._step_order = [op for op in toposort(self.dg)
                            if hasattr(op, 'make_step')]

        # Add built states to the probe dictionary
        self._probe_outputs = self.model.params

        # Provide a nicer interface to probe outputs
        self.data = ProbeDict(self._probe_outputs)

        seed = np.random.randint(npext.maxint) if seed is None else seed
        self.reset(seed=seed)

    def __del__(self):
        """Raise a ResourceWarning if we are deallocated while open."""
        if not self.closed:
            warnings.warn(
                "Simulator with model=%s was deallocated while open. Please "
                "close simulators manually to ensure resources are properly "
                "freed." % self.model, ResourceWarning)

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_value, traceback):
        self.close()

    @property
    def dt(self):
        """(float) The time step of the simulator."""
        return self.model.dt

    @dt.setter
    def dt(self, dummy):
        raise ReadonlyError(attr='dt', obj=self)

    @property
    def n_steps(self):
        """(int) The current time step of the simulator."""
        return self._n_steps

    @property
    def time(self):
        """(float) The current time of the simulator."""
        return self._time

    def close(self):
        """Closes the simulator.

        Any call to `.Simulator.run`, `.Simulator.run_steps`,
        `.Simulator.step`, and `.Simulator.reset` on a closed simulator raises
        a `.SimulatorClosed` exception.
        """
        self.closed = True
        self.signals = None  # signals may no longer exist on some backends

    def _probe(self):
        """Copy all probed signals to buffers."""
        self._probe_step_time()

        for probe in self.model.probes:
            period = (1 if probe.sample_every is None else
                      probe.sample_every / self.dt)
            if self.n_steps % period < 1:
                tmp = self.signals[self.model.sig[probe]['in']].copy()
                self._probe_outputs[probe].append(tmp)

    def _probe_step_time(self):
        self._n_steps = self.signals[self.model.step].copy()
        self._time = self.signals[self.model.time].copy()

    def reset(self, seed=None):
        """Reset the simulator state.

        Parameters
        ----------
        seed : int, optional
            A seed for all stochastic operators used in the simulator.
            This will change the random sequences generated for noise
            or inputs (e.g. from processes), but not the built objects
            (e.g. ensembles, connections).
        """
        if self.closed:
            raise SimulatorClosed("Cannot reset closed Simulator.")

        if seed is not None:
            self.seed = seed

        # reset signals
        for key in self.signals:
            self.signals.reset(key)

        # rebuild steps (resets ops with their own state, like Processes)
        self.rng = np.random.RandomState(self.seed)
        self._steps = [op.make_step(self.signals, self.dt, self.rng)
                       for op in self._step_order]

        # clear probe data
        for probe in self.model.probes:
            self._probe_outputs[probe] = []

        self._probe_step_time()

    def run(self, time_in_seconds, progress_bar=True):
        """Simulate for the given length of time.

        Parameters
        ----------
        time_in_seconds : float
            Amount of time to run the simulation for.
        progress_bar : bool or `.ProgressBar` or `.ProgressUpdater`, optional \
                       (Default: True)
            Progress bar for displaying the progress of the simulation run.

            If True, the default progress bar will be used.
            If False, the progress bar will be disabled.
            For more control over the progress bar, pass in a `.ProgressBar`
            or `.ProgressUpdater` instance.
        """
        steps = int(np.round(float(time_in_seconds) / self.dt))
        logger.info("Running %s for %f seconds, or %d steps",
                    self.model.label, time_in_seconds, steps)
        self.run_steps(steps, progress_bar=progress_bar)

    def run_steps(self, steps, progress_bar=True):
        """Simulate for the given number of ``dt`` steps.

        Parameters
        ----------
        steps : int
            Number of steps to run the simulation for.
        progress_bar : bool or `.ProgressBar` or `.ProgressUpdater`, optional \
                       (Default: True)
            Progress bar for displaying the progress of the simulation run.

            If True, the default progress bar will be used.
            If False, the progress bar will be disabled.
            For more control over the progress bar, pass in a `.ProgressBar`
            or `.ProgressUpdater` instance.
        """
        with ProgressTracker(steps, progress_bar) as progress:
            for i in range(steps):
                self.step()
                progress.step()

    def step(self):
        """Advance the simulator by 1 step (``dt`` seconds)."""
        if self.closed:
            raise SimulatorClosed("Simulator cannot run because it is closed.")

        old_err = np.seterr(invalid='raise', divide='ignore')
        try:
            for step_fn in self._steps:
                step_fn()
        finally:
            np.seterr(**old_err)

        self._probe()

    def trange(self, dt=None):
        """Create a vector of times matching probed data.

        Note that the range does not start at 0 as one might expect, but at
        the first timestep (i.e., ``dt``).

        Parameters
        ----------
        dt : float, optional (Default: None)
            The sampling period of the probe to create a range for.
            If None, the simulator's ``dt`` will be used.
        """
        dt = self.dt if dt is None else dt
        n_steps = int(self.n_steps * (self.dt / dt))
        return dt * np.arange(1, n_steps + 1)
Exemple #29
0
class Simulator:
    def add_sig(self, signal_to_engine_id, signal):
        if signal is None or signal in signal_to_engine_id:
            pass
        elif signal.base is None or signal is signal.base:
            signal_to_engine_id[signal] = SignalArrayF64(signal)
        else:
            current = signal
            sliceinfo = slices_from_signal(signal)
            while (current.base.base is not None
                   and current.base.base is not current.base):
                current = current.base
                sliceinfo = tuple(
                    slice(
                        b.start + b.step * a.start,
                        b.start + b.step * a.stop,
                        a.step * b.step,
                    ) for a, b in zip(sliceinfo, slices_from_signal(current)))
            self.add_sig(signal_to_engine_id, current.base)
            try:
                signal_to_engine_id[signal] = SignalArrayViewF64(
                    signal.name, sliceinfo, signal_to_engine_id[current.base])
            except TypeError:
                print(
                    f"TypeError: {signal.name} {sliceinfo} {current.base} {signal_to_engine_id[current.base]}"
                )
                raise

    def get_sig(self, signal_to_engine_id, signal):
        self.add_sig(signal_to_engine_id, signal)
        return signal_to_engine_id[signal]

    def __init__(self, network, dt=0.001, seed=None):
        self.model = Model(
            dt=float(dt),
            label="Nengo RS model",
            decoder_cache=get_default_decoder_cache(),
        )
        self.model.build(network)

        signal_to_engine_id = {}
        for signal_dict in self.model.sig.values():
            for signal in signal_dict.values():
                self.add_sig(signal_to_engine_id, signal)
        x = SignalU64("step", 0)
        signal_to_engine_id[self.model.step] = x
        signal_to_engine_id[self.model.time] = SignalF64("time", 0.0)
        self._sig_to_ngine_id = signal_to_engine_id

        dg = BidirectionalDAG(operator_dependency_graph(self.model.operators))
        toposorted_dg = toposort(dg.forward)
        node_indices = {node: idx for idx, node in enumerate(toposorted_dg)}

        ops = []
        for op in toposorted_dg:
            dependencies = [node_indices[node] for node in dg.backward[op]]
            if isinstance(op, core_op.Reset):
                ops.append(
                    Reset(
                        np.asarray(op.value, dtype=np.float64),
                        self.get_sig(signal_to_engine_id, op.dst),
                        dependencies,
                    ))
            elif isinstance(op, core_op.TimeUpdate):
                ops.append(
                    TimeUpdate(
                        dt,
                        self.get_sig(signal_to_engine_id, self.model.step),
                        self.get_sig(signal_to_engine_id, self.model.time),
                        dependencies,
                    ))
            elif isinstance(op, core_op.ElementwiseInc):
                ops.append(
                    ElementwiseInc(
                        self.get_sig(signal_to_engine_id, op.Y),
                        self.get_sig(signal_to_engine_id, op.A),
                        self.get_sig(signal_to_engine_id, op.X),
                        dependencies,
                    ))
            elif isinstance(op, core_op.Copy):
                assert op.src_slice is None and op.dst_slice is None
                ops.append(
                    Copy(
                        op.inc,
                        self.get_sig(signal_to_engine_id, op.src),
                        self.get_sig(signal_to_engine_id, op.dst),
                        dependencies,
                    ))
            elif isinstance(op, core_op.DotInc):
                ops.append(
                    DotInc(
                        self.get_sig(signal_to_engine_id, op.Y),
                        self.get_sig(signal_to_engine_id, op.A),
                        self.get_sig(signal_to_engine_id, op.X),
                        dependencies,
                    ))
            elif isinstance(op, neurons.SimNeurons):
                signals = SignalDict()
                op.init_signals(signals)
                ops.append(
                    SimNeurons(
                        self.dt,
                        op.neurons.step_math,
                        [signals[s]
                         for s in op.states] if hasattr(op, "states") else [],
                        self.get_sig(signal_to_engine_id, op.J),
                        self.get_sig(signal_to_engine_id, op.output),
                        dependencies,
                    ))
            elif isinstance(op, processes.SimProcess):
                signals = SignalDict()
                op.init_signals(signals)
                shape_in = (0, ) if op.input is None else op.input.shape
                shape_out = op.output.shape
                rng = None
                state = {k: signals[s] for k, s in op.state.items()}
                step_fn = op.process.make_step(shape_in, shape_out, self.dt,
                                               rng, state)
                ops.append(
                    SimProcess(
                        op.mode == "inc",
                        lambda *args, step_fn=step_fn: np.asarray(
                            step_fn(*args), dtype=float),
                        self.get_sig(signal_to_engine_id, op.t),
                        self.get_sig(signal_to_engine_id, op.output),
                        None if op.input is None else self.get_sig(
                            signal_to_engine_id, op.input),
                        dependencies,
                    ))
            elif isinstance(op, core_op.SimPyFunc):
                ops.append(
                    SimPyFunc(
                        lambda *args, op=op: np.asarray(op.fn(*args),
                                                        dtype=float),
                        self.get_sig(signal_to_engine_id, op.output),
                        None if op.t is None else self.get_sig(
                            signal_to_engine_id, op.t),
                        None if op.x is None else self.get_sig(
                            signal_to_engine_id, op.x),
                        dependencies,
                    ))
            else:
                raise Exception(f"missing: {op}")

        self.probe_mapping = {}
        for probe in self.model.probes:
            self.probe_mapping[probe] = Probe(
                signal_to_engine_id[self.model.sig[probe]["in"]])

        self._engine = Engine(list(signal_to_engine_id.values()), ops,
                              list(self.probe_mapping.values()))
        self.data = SimData(self)
        print("initialized")

        self._engine.reset()

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_value, traceback):
        self.close()

    def close(self):
        pass

    @property
    def dt(self):
        return self.model.dt

    def run(self, time_in_seconds):
        print("run")
        n_steps = int(time_in_seconds / self.dt)
        self._engine.run_steps(n_steps)

    def run_step(self):
        self._engine.run_step()

    def trange(self):
        step = self._sig_to_ngine_id[self.model.step].get()
        return np.arange(1, step + 1) * self.dt
Exemple #30
0
    def __init__(self, network, dt=0.001, seed=None):
        self.model = Model(
            dt=float(dt),
            label="Nengo RS model",
            decoder_cache=get_default_decoder_cache(),
        )
        self.model.build(network)

        signal_to_engine_id = {}
        for signal_dict in self.model.sig.values():
            for signal in signal_dict.values():
                self.add_sig(signal_to_engine_id, signal)
        x = SignalU64("step", 0)
        signal_to_engine_id[self.model.step] = x
        signal_to_engine_id[self.model.time] = SignalF64("time", 0.0)
        self._sig_to_ngine_id = signal_to_engine_id

        dg = BidirectionalDAG(operator_dependency_graph(self.model.operators))
        toposorted_dg = toposort(dg.forward)
        node_indices = {node: idx for idx, node in enumerate(toposorted_dg)}

        ops = []
        for op in toposorted_dg:
            dependencies = [node_indices[node] for node in dg.backward[op]]
            if isinstance(op, core_op.Reset):
                ops.append(
                    Reset(
                        np.asarray(op.value, dtype=np.float64),
                        self.get_sig(signal_to_engine_id, op.dst),
                        dependencies,
                    ))
            elif isinstance(op, core_op.TimeUpdate):
                ops.append(
                    TimeUpdate(
                        dt,
                        self.get_sig(signal_to_engine_id, self.model.step),
                        self.get_sig(signal_to_engine_id, self.model.time),
                        dependencies,
                    ))
            elif isinstance(op, core_op.ElementwiseInc):
                ops.append(
                    ElementwiseInc(
                        self.get_sig(signal_to_engine_id, op.Y),
                        self.get_sig(signal_to_engine_id, op.A),
                        self.get_sig(signal_to_engine_id, op.X),
                        dependencies,
                    ))
            elif isinstance(op, core_op.Copy):
                assert op.src_slice is None and op.dst_slice is None
                ops.append(
                    Copy(
                        op.inc,
                        self.get_sig(signal_to_engine_id, op.src),
                        self.get_sig(signal_to_engine_id, op.dst),
                        dependencies,
                    ))
            elif isinstance(op, core_op.DotInc):
                ops.append(
                    DotInc(
                        self.get_sig(signal_to_engine_id, op.Y),
                        self.get_sig(signal_to_engine_id, op.A),
                        self.get_sig(signal_to_engine_id, op.X),
                        dependencies,
                    ))
            elif isinstance(op, neurons.SimNeurons):
                signals = SignalDict()
                op.init_signals(signals)
                ops.append(
                    SimNeurons(
                        self.dt,
                        op.neurons.step_math,
                        [signals[s]
                         for s in op.states] if hasattr(op, "states") else [],
                        self.get_sig(signal_to_engine_id, op.J),
                        self.get_sig(signal_to_engine_id, op.output),
                        dependencies,
                    ))
            elif isinstance(op, processes.SimProcess):
                signals = SignalDict()
                op.init_signals(signals)
                shape_in = (0, ) if op.input is None else op.input.shape
                shape_out = op.output.shape
                rng = None
                state = {k: signals[s] for k, s in op.state.items()}
                step_fn = op.process.make_step(shape_in, shape_out, self.dt,
                                               rng, state)
                ops.append(
                    SimProcess(
                        op.mode == "inc",
                        lambda *args, step_fn=step_fn: np.asarray(
                            step_fn(*args), dtype=float),
                        self.get_sig(signal_to_engine_id, op.t),
                        self.get_sig(signal_to_engine_id, op.output),
                        None if op.input is None else self.get_sig(
                            signal_to_engine_id, op.input),
                        dependencies,
                    ))
            elif isinstance(op, core_op.SimPyFunc):
                ops.append(
                    SimPyFunc(
                        lambda *args, op=op: np.asarray(op.fn(*args),
                                                        dtype=float),
                        self.get_sig(signal_to_engine_id, op.output),
                        None if op.t is None else self.get_sig(
                            signal_to_engine_id, op.t),
                        None if op.x is None else self.get_sig(
                            signal_to_engine_id, op.x),
                        dependencies,
                    ))
            else:
                raise Exception(f"missing: {op}")

        self.probe_mapping = {}
        for probe in self.model.probes:
            self.probe_mapping[probe] = Probe(
                signal_to_engine_id[self.model.sig[probe]["in"]])

        self._engine = Engine(list(signal_to_engine_id.values()), ops,
                              list(self.probe_mapping.values()))
        self.data = SimData(self)
        print("initialized")

        self._engine.reset()
Exemple #31
0
class Simulator(object):
    """Reference simulator for Nengo models."""
    def __init__(self,
                 network,
                 dt=0.001,
                 seed=None,
                 model=None,
                 dtype=rc.get('precision', 'dtype')):
        """Initialize the simulator with a network and (optionally) a model.

        Most of the time, you will pass in a network and sometimes a dt::

            sim1 = nengo.Simulator(my_network)  # Uses default 0.001s dt
            sim2 = nengo.Simulator(my_network, dt=0.01)  # Uses 0.01s dt

        For more advanced use cases, you can initialize the model yourself,
        and also pass in a network that will be built into the same model
        that you pass in::

            sim = nengo.Simulator(my_network, model=my_model)

        If you want full control over the build process, then you can build
        your network into the model manually. If you do this, then you must
        explicitly pass in ``None`` for the network::

            sim = nengo.Simulator(None, model=my_model)

        Parameters
        ----------
        network : nengo.Network instance or None
            A network object to the built and then simulated.
            If a fully built ``model`` is passed in, then you can skip
            building the network by passing in network=None.
        dt : float
            The length of a simulator timestep, in seconds.
        seed : int
            A seed for all stochastic operators used in this simulator.
            Note that there are not stochastic operators implemented
            currently, so this parameters does nothing.
        model : nengo.builder.Model instance or None
            A model object that contains build artifacts to be simulated.
            Usually the simulator will build this model for you; however,
            if you want to build the network manually, or to inject some
            build artifacts in the Model before building the network,
            then you can pass in a ``nengo.builder.Model`` instance.
        """
        dt = float(dt)  # make sure it's a float (for division purposes)
        if model is None:
            self.model = Model(dt=dt,
                               label="%s, dt=%f" % (network, dt),
                               decoder_cache=get_default_decoder_cache(),
                               dtype=dtype)
        else:
            self.model = model

        #print(network)
        if network is not None:
            # Build the network into the model
            self.model.build(network)

        self.model.decoder_cache.shrink()

        self.seed = np.random.randint(npext.maxint) if seed is None else seed
        self.rng = np.random.RandomState(self.seed)

        # -- map from Signal.base -> ndarray
        self.signals = SignalDict(
            __time__=np.asarray(npext.castDecimal(0), dtype=self.dtype))
        #print(self.model)
        #print(self.model.operators)
        for op in self.model.operators:
            op.init_signals(self.signals)
        self.dg = operator_depencency_graph(self.model.operators)
        self._step_order = [
            node for node in toposort(self.dg) if hasattr(node, 'make_step')
        ]
        self._steps = [
            node.make_step(self.signals, dt, self.rng)
            for node in self._step_order
        ]

        # Add built states to the probe dictionary
        self._probe_outputs = self.model.params

        # Provide a nicer interface to probe outputs
        self.data = ProbeDict(self._probe_outputs)

        self.reset()

    @property
    def dt(self):
        """The time step of the simulator"""
        return self.model.dt

    @dt.setter
    def dt(self, dummy):
        raise AttributeError("Cannot change simulator 'dt'. Please file "
                             "an issue at http://github.com/nengo/nengo"
                             "/issues and describe your use case.")

    @property
    def dtype(self):
        return self.model.dtype

    @property
    def time(self):
        """The current time of the simulator"""
        return self.signals['__time__'].copy()

    def trange(self, dt=None):
        """Create a range of times matching probe data.

        Note that the range does not start at 0 as one might expect, but at
        the first timestep (i.e., dt).

        Parameters
        ----------
        dt : float (optional)
            The sampling period of the probe to create a range for. If empty,
            will use the default probe sampling period.
        """
        dt = self.dt if dt is None else dt
        n_steps = int(self.n_steps * (self.dt / dt))
        return dt * np.arange(1, n_steps + 1)

    def _probe(self):
        """Copy all probed signals to buffers"""
        for probe in self.model.probes:
            period = (1 if probe.sample_every is None else probe.sample_every /
                      self.dt)
            if self.n_steps % period < 1:
                tmp = self.signals[self.model.sig[probe]['in']].copy()
                self._probe_outputs[probe].append(tmp)

    def step(self):
        """Advance the simulator by `self.dt` seconds.
        """
        self.n_steps += 1
        self.signals['__time__'][...] = self.n_steps * self.dt

        old_err = np.seterr(invalid='raise', divide='ignore')
        try:
            for step_fn in self._steps:
                step_fn()
        finally:
            np.seterr(**old_err)

        self._probe()

    def run(self, time_in_seconds, progress_bar=True):
        """Simulate for the given length of time.

        Parameters
        ----------
        steps : int
            Number of steps to run the simulation for.
        progress_bar : bool or ``ProgressBar`` or ``ProgressUpdater``, optional
            Progress bar for displaying the progress.

            By default, ``progress_bar=True``, which uses the default progress
            bar (text in most situations, or an HTML version in recent IPython
            notebooks).

            To disable the progress bar, use ``progress_bar=False``.

            For more control over the progress bar, pass in a
            :class:`nengo.utils.progress.ProgressBar`,
            or :class:`nengo.utils.progress.ProgressUpdater` instance.
        """
        steps = int(np.round(float(time_in_seconds) / self.dt))
        logger.debug("Running %s for %f seconds, or %d steps",
                     self.model.label, time_in_seconds, steps)
        self.run_steps(steps, progress_bar=progress_bar)

    def run_steps(self, steps, progress_bar=True):
        """Simulate for the given number of `dt` steps.

        Parameters
        ----------
        steps : int
            Number of steps to run the simulation for.
        progress_bar : bool or ``ProgressBar`` or ``ProgressUpdater``, optional
            Progress bar for displaying the progress.

            By default, ``progress_bar=True``, which uses the default progress
            bar (text in most situations, or an HTML version in recent IPython
            notebooks).

            To disable the progress bar, use ``progress_bar=False``.

            For more control over the progress bar, pass in a
            :class:`nengo.utils.progress.ProgressBar`,
            or :class:`nengo.utils.progress.ProgressUpdater` instance.
        """
        with ProgressTracker(steps, progress_bar) as progress:
            for i in range(steps):
                self.step()
                progress.step()

    def reset(self):
        """Reset the simulator state."""
        self.n_steps = 0
        self.signals['__time__'][...] = 0

        for key in self.signals:
            if key != '__time__':
                self.signals.reset(key)

        for probe in self.model.probes:
            self._probe_outputs[probe] = []
Exemple #32
0
    def __init__(self,
                 network,
                 dt=0.001,
                 seed=None,
                 model=None,
                 dtype=rc.get('precision', 'dtype')):
        """Initialize the simulator with a network and (optionally) a model.

        Most of the time, you will pass in a network and sometimes a dt::

            sim1 = nengo.Simulator(my_network)  # Uses default 0.001s dt
            sim2 = nengo.Simulator(my_network, dt=0.01)  # Uses 0.01s dt

        For more advanced use cases, you can initialize the model yourself,
        and also pass in a network that will be built into the same model
        that you pass in::

            sim = nengo.Simulator(my_network, model=my_model)

        If you want full control over the build process, then you can build
        your network into the model manually. If you do this, then you must
        explicitly pass in ``None`` for the network::

            sim = nengo.Simulator(None, model=my_model)

        Parameters
        ----------
        network : nengo.Network instance or None
            A network object to the built and then simulated.
            If a fully built ``model`` is passed in, then you can skip
            building the network by passing in network=None.
        dt : float
            The length of a simulator timestep, in seconds.
        seed : int
            A seed for all stochastic operators used in this simulator.
            Note that there are not stochastic operators implemented
            currently, so this parameters does nothing.
        model : nengo.builder.Model instance or None
            A model object that contains build artifacts to be simulated.
            Usually the simulator will build this model for you; however,
            if you want to build the network manually, or to inject some
            build artifacts in the Model before building the network,
            then you can pass in a ``nengo.builder.Model`` instance.
        """
        dt = float(dt)  # make sure it's a float (for division purposes)
        if model is None:
            self.model = Model(dt=dt,
                               label="%s, dt=%f" % (network, dt),
                               decoder_cache=get_default_decoder_cache(),
                               dtype=dtype)
        else:
            self.model = model

        #print(network)
        if network is not None:
            # Build the network into the model
            self.model.build(network)

        self.model.decoder_cache.shrink()

        self.seed = np.random.randint(npext.maxint) if seed is None else seed
        self.rng = np.random.RandomState(self.seed)

        # -- map from Signal.base -> ndarray
        self.signals = SignalDict(
            __time__=np.asarray(npext.castDecimal(0), dtype=self.dtype))
        #print(self.model)
        #print(self.model.operators)
        for op in self.model.operators:
            op.init_signals(self.signals)
        self.dg = operator_depencency_graph(self.model.operators)
        self._step_order = [
            node for node in toposort(self.dg) if hasattr(node, 'make_step')
        ]
        self._steps = [
            node.make_step(self.signals, dt, self.rng)
            for node in self._step_order
        ]

        # Add built states to the probe dictionary
        self._probe_outputs = self.model.params

        # Provide a nicer interface to probe outputs
        self.data = ProbeDict(self._probe_outputs)

        self.reset()