Exemple #1
0
 class Test(object):
     ntp = NeuronTypeParam('ntp', default=None)
Exemple #2
0
class Ensemble(NengoObject):
    """A group of neurons that collectively represent a vector.

    Parameters
    ----------
    n_neurons : int
        The number of neurons.
    dimensions : int
        The number of representational dimensions.
    radius : int, optional
        The representational radius of the ensemble.
    encoders : Distribution or ndarray (`n_neurons`, `dimensions`), optional
        The encoders, used to transform from representational space
        to neuron space. Each row is a neuron's encoder, each column is a
        representational dimension.
    intercepts : Distribution or ndarray (`n_neurons`), optional
        The point along each neuron's encoder where its activity is zero. If
        e is the neuron's encoder, then the activity will be zero when
        dot(x, e) <= c, where c is the given intercept.
    max_rates : Distribution or ndarray (`n_neurons`), optional
        The activity of each neuron when dot(x, e) = 1, where e is the neuron's
        encoder.
    eval_points : Distribution or ndarray (`n_eval_points`, `dims`), optional
        The evaluation points used for decoder solving, spanning the interval
        (-radius, radius) in each dimension, or a distribution from which to
        choose evaluation points. Default: ``UniformHypersphere``.
    n_eval_points : int, optional
        The number of evaluation points to be drawn from the `eval_points`
        distribution. If None (the default), then a heuristic is used to
        determine the number of evaluation points.
    neuron_type : Neurons, optional
        The model that simulates all neurons in the ensemble.
    noise : StochasticProcess, optional
        Random noise injected directly into each neuron in the ensemble
        as current. A sample is drawn for each individual neuron on
        every simulation step.
    seed : int, optional
        The seed used for random number generation.
    label : str, optional
        A name for the ensemble. Used for debugging and visualization.
    """

    n_neurons = IntParam(default=None, low=1)
    dimensions = IntParam(default=None, low=1)
    radius = NumberParam(default=1, low=1e-10)
    neuron_type = NeuronTypeParam(default=LIF())
    encoders = DistributionParam(default=UniformHypersphere(surface=True),
                                 sample_shape=('n_neurons', 'dimensions'))
    intercepts = DistributionParam(default=Uniform(-1.0, 1.0),
                                   optional=True,
                                   sample_shape=('n_neurons', ))
    max_rates = DistributionParam(default=Uniform(200, 400),
                                  optional=True,
                                  sample_shape=('n_neurons', ))
    n_eval_points = IntParam(default=None, optional=True)
    eval_points = DistributionParam(default=UniformHypersphere(),
                                    sample_shape=('*', 'dimensions'))
    bias = DistributionParam(default=None,
                             optional=True,
                             sample_shape=('n_neurons', ))
    gain = DistributionParam(default=None,
                             optional=True,
                             sample_shape=('n_neurons', ))
    noise = StochasticProcessParam(default=None, optional=True)
    seed = IntParam(default=None, optional=True)
    label = StringParam(default=None, optional=True)

    def __init__(self,
                 n_neurons,
                 dimensions,
                 radius=Default,
                 encoders=Default,
                 intercepts=Default,
                 max_rates=Default,
                 eval_points=Default,
                 n_eval_points=Default,
                 neuron_type=Default,
                 gain=Default,
                 bias=Default,
                 noise=Default,
                 seed=Default,
                 label=Default):

        self.n_neurons = n_neurons
        self.dimensions = dimensions
        self.radius = radius
        self.encoders = encoders
        self.intercepts = intercepts
        self.max_rates = max_rates
        self.label = label
        self.n_eval_points = n_eval_points
        self.eval_points = eval_points
        self.bias = bias
        self.gain = gain
        self.neuron_type = neuron_type
        self.noise = noise
        self.seed = seed
        self._neurons = Neurons(self)

    def __getitem__(self, key):
        return ObjView(self, key)

    def __len__(self):
        return self.dimensions

    @property
    def neurons(self):
        return self._neurons

    @neurons.setter
    def neurons(self, dummy):
        raise AttributeError("neurons cannot be overwritten.")

    @property
    def probeable(self):
        return ["decoded_output", "input"]

    @property
    def size_in(self):
        return self.dimensions

    @property
    def size_out(self):
        return self.dimensions
Exemple #3
0
 class Test:
     ntp = NeuronTypeParam("ntp", default=None)
Exemple #4
0
class Ensemble(NengoObject):
    """A group of neurons that collectively represent a vector.

    Parameters
    ----------
    n_neurons : int
        The number of neurons.
    dimensions : int
        The number of representational dimensions.

    radius : int, optional (Default: 1.0)
        The representational radius of the ensemble.
    encoders : Distribution or (n_neurons, dimensions) array_like, optional \
               (Default: UniformHypersphere(surface=True))
        The encoders used to transform from representational space
        to neuron space. Each row is a neuron's encoder; each column is a
        representational dimension.
    intercepts : Distribution or (n_neurons,) array_like, optional \
                 (Default: ``nengo.dists.Uniform(-1.0, 1.0)``)
        The point along each neuron's encoder where its activity is zero. If
        ``e`` is the neuron's encoder, then the activity will be zero when
        ``dot(x, e) <= c``, where ``c`` is the given intercept.
    max_rates : Distribution or (n_neurons,) array_like, optional \
                (Default: ``nengo.dists.Uniform(200, 400)``)
        The activity of each neuron when the input signal ``x`` is magnitude 1
        and aligned with that neuron's encoder ``e``;
        i.e., when ``dot(x, e) = 1``.
    eval_points : Distribution or (n_eval_points, dims) array_like, optional \
                  (Default: ``nengo.dists.UniformHypersphere()``)
        The evaluation points used for decoder solving, spanning the interval
        (-radius, radius) in each dimension, or a distribution from which
        to choose evaluation points.
    n_eval_points : int, optional (Default: None)
        The number of evaluation points to be drawn from the ``eval_points``
        distribution. If None, then a heuristic is used to determine
        the number of evaluation points.
    neuron_type : `~nengo.neurons.NeuronType`, optional \
                  (Default: ``nengo.LIF()``)
        The model that simulates all neurons in the ensemble
        (see `~nengo.neurons.NeuronType`).
    gain : Distribution or (n_neurons,) array_like (Default: None)
        The gains associated with each neuron in the ensemble. If None, then
        the gain will be solved for using ``max_rates`` and ``intercepts``.
    bias : Distribution or (n_neurons,) array_like (Default: None)
        The biases associated with each neuron in the ensemble. If None, then
        the gain will be solved for using ``max_rates`` and ``intercepts``.
    noise : Process, optional (Default: None)
        Random noise injected directly into each neuron in the ensemble
        as current. A sample is drawn for each individual neuron on
        every simulation step.
    normalize_encoders : bool, optional (Default: True)
        Indicates whether the encoders should be normalized.
    label : str, optional (Default: None)
        A name for the ensemble. Used for debugging and visualization.
    seed : int, optional (Default: None)
        The seed used for random number generation.

    Attributes
    ----------
    bias : Distribution or (n_neurons,) array_like or None
        The biases associated with each neuron in the ensemble.
    dimensions : int
        The number of representational dimensions.
    encoders : Distribution or (n_neurons, dimensions) array_like
        The encoders, used to transform from representational space
        to neuron space. Each row is a neuron's encoder, each column is a
        representational dimension.
    eval_points : Distribution or (n_eval_points, dims) array_like
        The evaluation points used for decoder solving, spanning the interval
        (-radius, radius) in each dimension, or a distribution from which
        to choose evaluation points.
    gain : Distribution or (n_neurons,) array_like or None
        The gains associated with each neuron in the ensemble.
    intercepts : Distribution or (n_neurons) array_like or None
        The point along each neuron's encoder where its activity is zero. If
        ``e`` is the neuron's encoder, then the activity will be zero when
        ``dot(x, e) <= c``, where ``c`` is the given intercept.
    label : str or None
        A name for the ensemble. Used for debugging and visualization.
    max_rates : Distribution or (n_neurons,) array_like or None
        The activity of each neuron when ``dot(x, e) = 1``,
        where ``e`` is the neuron's encoder.
    n_eval_points : int or None
        The number of evaluation points to be drawn from the ``eval_points``
        distribution. If None, then a heuristic is used to determine
        the number of evaluation points.
    n_neurons : int or None
        The number of neurons.
    neuron_type : NeuronType
        The model that simulates all neurons in the ensemble
        (see ``nengo.neurons``).
    noise : Process or None
        Random noise injected directly into each neuron in the ensemble
        as current. A sample is drawn for each individual neuron on
        every simulation step.
    radius : int
        The representational radius of the ensemble.
    seed : int or None
        The seed used for random number generation.
    """

    probeable = ('decoded_output', 'input', 'scaled_encoders')

    n_neurons = IntParam('n_neurons', low=1)
    dimensions = IntParam('dimensions', low=1)
    radius = NumberParam('radius', default=1.0, low=1e-10)
    encoders = DistOrArrayParam('encoders',
                                default=UniformHypersphere(surface=True),
                                sample_shape=('n_neurons', 'dimensions'))
    intercepts = DistOrArrayParam('intercepts',
                                  default=Uniform(-1.0, 1.0),
                                  optional=True,
                                  sample_shape=('n_neurons', ))
    max_rates = DistOrArrayParam('max_rates',
                                 default=Uniform(200, 400),
                                 optional=True,
                                 sample_shape=('n_neurons', ))
    eval_points = DistOrArrayParam('eval_points',
                                   default=UniformHypersphere(),
                                   sample_shape=('*', 'dimensions'))
    n_eval_points = IntParam('n_eval_points', default=None, optional=True)
    neuron_type = NeuronTypeParam('neuron_type', default=LIF())
    gain = DistOrArrayParam('gain',
                            default=None,
                            optional=True,
                            sample_shape=('n_neurons', ))
    bias = DistOrArrayParam('bias',
                            default=None,
                            optional=True,
                            sample_shape=('n_neurons', ))
    noise = ProcessParam('noise', default=None, optional=True)
    normalize_encoders = BoolParam('normalize_encoders',
                                   default=True,
                                   optional=True)

    def __init__(self,
                 n_neurons,
                 dimensions,
                 radius=Default,
                 encoders=Default,
                 intercepts=Default,
                 max_rates=Default,
                 eval_points=Default,
                 n_eval_points=Default,
                 neuron_type=Default,
                 gain=Default,
                 bias=Default,
                 noise=Default,
                 normalize_encoders=Default,
                 label=Default,
                 seed=Default):
        super(Ensemble, self).__init__(label=label, seed=seed)
        self.n_neurons = n_neurons
        self.dimensions = dimensions
        self.radius = radius
        self.encoders = encoders
        self.intercepts = intercepts
        self.max_rates = max_rates
        self.n_eval_points = n_eval_points
        self.eval_points = eval_points
        self.bias = bias
        self.gain = gain
        self.neuron_type = neuron_type
        self.noise = noise
        self.normalize_encoders = normalize_encoders

    def __getitem__(self, key):
        return ObjView(self, key)

    def __len__(self):
        return self.dimensions

    @property
    def neurons(self):
        """A direct interface to the neurons in the ensemble."""
        return Neurons(self)

    @neurons.setter
    def neurons(self, dummy):
        raise ReadonlyError(attr="neurons", obj=self)

    @property
    def size_in(self):
        """The dimensionality of the ensemble."""
        return self.dimensions

    @property
    def size_out(self):
        """The dimensionality of the ensemble."""
        return self.dimensions
Exemple #5
0
class EchoState(Network, Reservoir):
    """An Echo State Network (ESN) within a Nengo Reservoir.

    This creates a standard Echo State Network (ENS) as a Nengo network,
    defaulting to the standard set of assumptions of non-spiking Tanh units
    and a random recurrent weight matrix [1]_. This is based on the
    minimalist Python implementation from [2]_.

    The network takes some arbitrary time-varying vector as input, encodes it
    randomly, and filters it using nonlinear units and a random recurrent
    weight matrix normalized by its spectral radius.

    This class also inherits ``nengolib.networks.Reservoir``, and thus the
    optimal linear readout is solved for in the same way: the network is
    simulated on a test signal, and then a solver is used to optimize the
    decoding connection weights.

    References:
        [1] http://www.scholarpedia.org/article/Echo_state_network
        [2] http://minds.jacobs-university.de/mantas/code
    """

    n_neurons = IntParam('n_neurons', default=None, low=1)
    dimensions = IntParam('dimensions', default=None, low=1)
    dt = NumberParam('dt', low=0, low_open=True)
    recurrent_synapse = SynapseParam('recurrent_synapse')
    gain = NumberParam('gain', low=0, low_open=True)
    neuron_type = NeuronTypeParam('neuron_type')

    def __init__(self,
                 n_neurons,
                 dimensions,
                 recurrent_synapse=0.005,
                 readout_synapse=None,
                 radii=1.0,
                 gain=1.25,
                 rng=None,
                 neuron_type=Tanh(),
                 include_bias=True,
                 ens_seed=None,
                 label=None,
                 seed=None,
                 add_to_container=None,
                 **ens_kwargs):
        """Initializes the Echo State Network.

        Parameters
        ----------
        n_neurons : int
            The number of neurons to use in the reservoir.
        dimensions : int
            The dimensionality of the input signal.
        recurrent_synapse : nengo.synapses.Synapse (Default: ``0.005``)
            Synapse used to filter the recurrent connection.
        readout_synapse : nengo.synapses.Synapse (Default: ``None``)
            Optional synapse to filter all of the outputs before solving
            for the linear readout. This is included in the connection to the
            ``output`` Node created within the network.
        radii : scalar or array_like, optional (Default: ``1``)
            The radius of each dimension of the input signal, used to normalize
            the incoming connection weights.
        gain : scalar, optional (Default: ``1.25``)
            A scalar gain on the recurrent connection weight matrix.
        rng : ``numpy.random.RandomState``, optional (Default: ``None``)
            Random state used to initialize all weights.
        neuron_type : ``nengo.neurons.NeuronType`` optional \
                      (Default: ``Tanh()``)
            Neuron model to use within the reservoir.
        include_bias : ``bool`` (Default: ``True``)
            Whether to include a bias current to the neural nonlinearity.
            This should be ``False`` if the neuron model already has a bias,
            e.g., ``LIF`` or ``LIFRate``.
        ens_seed : int, optional (Default: ``None``)
            Seed passed to the ensemble of neurons.
        """

        Network.__init__(self, label, seed, add_to_container)

        self.n_neurons = n_neurons
        self.dimensions = dimensions
        self.recurrent_synapse = recurrent_synapse
        self.radii = radii  # TODO: make array or scalar parameter?
        self.gain = gain
        self.rng = np.random if rng is None else rng
        self.neuron_type = neuron_type
        self.include_bias = include_bias

        self.W_in = (self.rng.rand(self.n_neurons, self.dimensions) -
                     0.5) / self.radii
        if self.include_bias:
            self.W_bias = self.rng.rand(self.n_neurons, 1) - 0.5
        else:
            self.W_bias = np.zeros((self.n_neurons, 1))
        self.W = self.rng.rand(self.n_neurons, self.n_neurons) - 0.5
        self.W *= self.gain / max(abs(eig(self.W)[0]))

        with self:
            self.ensemble = nengo.Ensemble(self.n_neurons,
                                           1,
                                           neuron_type=self.neuron_type,
                                           seed=ens_seed,
                                           **ens_kwargs)
            self.input = nengo.Node(size_in=self.dimensions)

            pool = self.ensemble.neurons
            nengo.Connection(self.input,
                             pool,
                             transform=self.W_in,
                             synapse=None)
            nengo.Connection(  # note the bias will be active during training
                nengo.Node(output=1, label="bias"),
                pool,
                transform=self.W_bias,
                synapse=None)
            nengo.Connection(self.ensemble.neurons,
                             pool,
                             transform=self.W,
                             synapse=self.recurrent_synapse)

        Reservoir.__init__(self,
                           self.input,
                           pool,
                           readout_synapse=readout_synapse,
                           network=self)
Exemple #6
0
 class Test:
     ntp = NeuronTypeParam('ntp', default=None)