Exemple #1
0
def test_op_constant(dtype, diff, sess):
    ops = (SimNeurons(LIF(tau_rc=1), Signal(np.zeros(10)), None),
           SimNeurons(LIF(tau_rc=2 if diff else 1), Signal(np.zeros(10)),
                      None))

    signals = SignalDict(tf.float32, 1)
    const = signals.op_constant(
        [op.neurons for op in ops], [op.J.shape[0] for op in ops],
        "tau_rc", dtype)
    const1 = signals.op_constant(
        [op.neurons for op in ops], [op.J.shape[0] for op in ops],
        "tau_rc", dtype, ndims=1)
    const3 = signals.op_constant(
        [op.neurons for op in ops], [op.J.shape[0] for op in ops],
        "tau_rc", dtype, ndims=3)

    assert const.dtype.base_dtype == dtype

    sess.run(tf.variables_initializer(tf.get_collection("constants")),
             feed_dict=signals.constant_phs)
    x, x1, x3 = sess.run([const, const1, const3])

    if diff:
        assert np.array_equal(x, [[1]] * 10 + [[2]] * 10)
        assert np.array_equal(x[:, 0], x1)
        assert np.array_equal(x, x3[..., 0])
    else:
        assert np.array_equal(x, 1.0)
        assert np.array_equal(x, x1)
        assert np.array_equal(x, x3)
Exemple #2
0
def test_op_constant(dtype, diff):
    ops = (
        SimNeurons(LIF(tau_rc=1), Signal(np.zeros(10)), None),
        SimNeurons(LIF(tau_rc=2 if diff else 1), Signal(np.zeros(10)), None),
    )

    signals = SignalDict(tf.float32, 1)
    const = signals.op_constant(
        [op.neurons for op in ops], [op.J.shape[0] for op in ops], "tau_rc", dtype
    )
    const1 = signals.op_constant(
        [op.neurons for op in ops],
        [op.J.shape[0] for op in ops],
        "tau_rc",
        dtype,
        shape=(-1,),
    )
    const3 = signals.op_constant(
        [op.neurons for op in ops],
        [op.J.shape[0] for op in ops],
        "tau_rc",
        dtype,
        shape=(1, -1, 1),
    )

    assert const.dtype.base_dtype == dtype

    if diff:
        assert np.array_equal(const, [[1.0] * 10 + [2.0] * 10])
        assert np.array_equal(const[0], const1)
        assert np.array_equal(const, const3[..., 0])
    else:
        assert np.array_equal(const, 1.0)
        assert np.array_equal(const, const1)
        assert np.array_equal(const, const3)
Exemple #3
0
def test_constant_gpu(sess):
    val = np.random.randn(10, 10).astype(np.int32)

    with tf.device("/gpu:0"):
        signals = SignalDict(tf.float32, 1)
        const = signals.constant(val, cutoff=0)

        assert const.dtype == tf.int32
        assert "GPU" in const.device.upper()

    sess.run(tf.variables_initializer(tf.get_collection("constants")),
             feed_dict=signals.constant_phs)
    c = sess.run(const)

    assert np.allclose(val, c)
Exemple #4
0
def test_tf_indices_nd(ndims):
    signals = SignalDict(tf.float32, 10)
    shape = (3, 4, 5)[:ndims]
    x = tf.ones(shape) * tf.reshape(
        tf.range(0, 3, dtype=tf.float32), (-1,) + (1,) * (ndims - 1)
    )
    assert x.shape == shape
    sig = signals.get_tensor_signal([(0, 1), (2, 3)], None, np.float32, shape, False)
    indices = sig.tf_indices_nd

    result = tf.gather_nd(x, indices)

    assert result.shape == (2,) + shape[1:]
    assert np.allclose(result[0], 0)
    assert np.allclose(result[1], 2)
Exemple #5
0
def test_signal_dict_combine():
    minibatch_size = 1
    signals = SignalDict(tf.float32, minibatch_size)

    key = object()

    assert signals.combine([]) == []

    y = signals.combine(
        [signals.get_tensor_signal([0, 1, 2], key, None, (3, 2), False),
         signals.get_tensor_signal([4, 5, 6], key, None, (3, 2), False)])
    assert y.key is key
    assert y._tf_indices is None

    assert y.shape == (6, 2)

    assert np.all(y.indices == [0, 1, 2, 4, 5, 6])
Exemple #6
0
def test_constant_gpu():
    val = np.random.randn(10, 10).astype(np.int32)

    graph = tf.Graph()
    with graph.as_default(), graph.device("/gpu:0"):
        signals = SignalDict(None, tf.float32, 1)
        const = signals.constant(val, cutoff=0)

        assert const.dtype == tf.int32
        assert "GPU" in const.device.upper()

    with tf.Session(graph=graph) as sess:
        sess.run(tf.variables_initializer(tf.get_collection("constants")),
                 feed_dict=signals.constant_phs)
        c = sess.run(const)

    assert np.allclose(val, c)
Exemple #7
0
def test_signal_dict_combine():
    minibatch_size = 1
    signals = SignalDict(tf.float32, minibatch_size)

    key = object()

    assert signals.combine([]) == []

    y = signals.combine(
        [
            signals.get_tensor_signal([(0, 3)], key, None, (3, 2), False),
            signals.get_tensor_signal([(4, 7)], key, None, (3, 2), False),
        ]
    )
    assert y.key is key
    assert y._tf_indices is None
    assert y.shape == (6, 2)
    assert y.slices == ((0, 3), (4, 7))

    y = signals.combine(
        [
            signals.get_tensor_signal([(0, 3)], key, None, (3, 2), False),
            signals.get_tensor_signal([(3, 6)], key, None, (3, 2), False),
        ]
    )
    assert y.key is key
    assert y._tf_indices is None
    assert y.shape == (6, 2)
    assert y.slices == ((0, 6),)
Exemple #8
0
def test_constant(dtype, sess):
    val = np.random.randn(10, 10).astype(np.float64)

    signals = SignalDict(tf.float32, 1)
    const0 = signals.constant(val, dtype=dtype)
    const1 = signals.constant(val, dtype=dtype, cutoff=0)

    assert const0.op.type == "Const"
    assert const1.op.type == "Identity"

    assert const0.dtype == (dtype if dtype else tf.as_dtype(val.dtype))
    assert const1.dtype == (dtype if dtype else tf.as_dtype(val.dtype))

    sess.run(tf.variables_initializer(tf.get_collection("constants")),
             feed_dict=signals.constant_phs)
    c0, c1 = sess.run([const0, const1])

    assert np.allclose(c0, val)
    assert np.allclose(c1, val)
Exemple #9
0
def test_get_tensor_signal():
    signals = SignalDict(tf.float32, 3)

    # check that tensor_signal is created correctly
    key = object()
    tensor_signal = signals.get_tensor_signal(
        (0,), key, np.float64, (3, 4), True)

    assert isinstance(tensor_signal, TensorSignal)
    assert np.array_equal(tensor_signal.indices, (0,))
    assert tensor_signal.key == key
    assert tensor_signal.dtype == np.float64
    assert tensor_signal.shape == (3, 4)
    assert tensor_signal.minibatch_size == 3
    assert tensor_signal.constant == signals.constant
    assert len(signals) == 0

    # check adding signal to sig_map
    sig = Signal(np.zeros(4))
    sig.minibatched = True
    tensor_signal = signals.get_tensor_signal(
        np.arange(4), key, np.float64, (2, 2), True, signal=sig)
    assert len(signals) == 1
    assert signals[sig] is tensor_signal
    assert next(iter(signals)) is sig
    assert next(iter(signals.values())) is tensor_signal

    # error if sig shape doesn't match indices
    with pytest.raises(AssertionError):
        sig = Signal(np.zeros((2, 2)))
        sig.minibatched = True
        signals.get_tensor_signal(
            np.arange(4), key, np.float64, (2, 2), True, signal=sig)

    # error if sig size doesn't match given shape
    with pytest.raises(AssertionError):
        sig = Signal(np.zeros(4))
        sig.minibatched = True
        signals.get_tensor_signal(
            np.arange(4), key, np.float64, (2, 3), True, signal=sig)

    # error if minibatched doesn't match
    with pytest.raises(AssertionError):
        sig = Signal(np.zeros(4))
        sig.minibatched = False
        signals.get_tensor_signal(
            np.arange(4), key, np.float64, (2, 2), True, signal=sig)
Exemple #10
0
def test_signal_dict_gather():
    minibatch_size = 1
    var_size = 19
    signals = SignalDict(tf.float32, minibatch_size)

    sess = tf.InteractiveSession()

    key = object()
    val = np.random.randn(var_size, minibatch_size)
    signals.bases = {key: tf.constant(val, dtype=tf.float32)}

    x = signals.get_tensor_signal([0, 1, 2, 3], key, tf.float32, (4,), True)

    # sliced read
    assert np.allclose(sess.run(signals.gather(x)), val[:4])

    # read with reshape
    x = signals.get_tensor_signal([0, 1, 2, 3], key, tf.float32, (2, 2), True)
    assert np.allclose(sess.run(signals.gather(x)),
                       val[:4].reshape((2, 2, minibatch_size)))

    # gather read
    x = signals.get_tensor_signal([0, 1, 2, 3], key, tf.float32, (4,), True)
    y = signals.gather(x, force_copy=True)
    assert "Gather" in y.op.type

    x = signals.get_tensor_signal([0, 0, 3, 3], key, tf.float32, (4,), True)
    assert np.allclose(sess.run(signals.gather(x)),
                       val[[0, 0, 3, 3]])
    assert "Gather" in y.op.type

    # reading from full array
    x = signals.get_tensor_signal(np.arange(var_size), key, tf.float32,
                                  (var_size,), True)
    y = signals.gather(x)
    assert y is signals.bases[key]

    # reading from strided full array
    x = signals.get_tensor_signal(np.arange(0, var_size, 2), key, tf.float32,
                                  (var_size // 2 + 1,), True)
    y = signals.gather(x)
    assert y.op.type == "StridedSlice"
    assert y.op.inputs[0] is signals.bases[key]

    # minibatch dimension
    x = signals.get_tensor_signal([0, 1, 2, 3], key, tf.float32, (4,), True)
    assert signals.gather(x).get_shape() == (4, 1)

    x = signals.get_tensor_signal([0, 1, 2, 3], key, tf.float32, (4,), False)
    assert signals.gather(x).get_shape() == (4,)

    sess.close()
Exemple #11
0
def test_signal_dict_scatter():
    minibatch_size = 1
    var_size = 19
    signals = SignalDict(tf.float32, minibatch_size)

    sess = tf.InteractiveSession()

    key = object()
    val = np.random.randn(var_size, minibatch_size)
    signals.bases = {key: tf.assign(tf.Variable(val, dtype=tf.float32),
                                    val)}

    x = signals.get_tensor_signal([0, 1, 2, 3], key, tf.float32, (4,), True)
    with pytest.raises(BuildError):
        # wrong dtype
        signals.scatter(x, tf.ones((4,), dtype=tf.float64))

    # update
    signals.scatter(x, tf.ones((4,)))
    y = sess.run(signals.bases[key])
    assert np.allclose(y[:4], 1)
    assert np.allclose(y[4:], val[4:])

    # increment, and reshaping val
    signals.scatter(x, tf.ones((2, 2)), mode="inc")
    y = sess.run(signals.bases[key])
    assert np.allclose(y[:4], 2)
    assert np.allclose(y[4:], val[4:])

    # recognize assignment to full array
    x = signals.get_tensor_signal(np.arange(var_size), key, tf.float32,
                                  (var_size,), True)
    y = tf.ones((var_size, 1))
    signals.scatter(x, y)
    assert signals.bases[key].op.type == "Assign"

    # recognize assignment to strided full array
    x = signals.get_tensor_signal(np.arange(0, var_size, 2), key, tf.float32,
                                  (var_size // 2 + 1,), True)
    y = tf.ones((var_size // 2 + 1, 1))
    signals.scatter(x, y)
    assert signals.bases[key].op.type == "ScatterUpdate"

    sess.close()
Exemple #12
0
def test_signal_dict_scatter(minibatched):
    minibatch_size = 2
    var_size = 19
    signals = SignalDict(tf.float32, minibatch_size)

    key = object()
    var_key = object()
    val = np.random.random(
        (minibatch_size, var_size) if minibatched else (var_size,)
    ).astype(np.float32)
    update_shape = (minibatch_size, 4) if minibatched else (4,)
    pre_slice = np.index_exp[:, :4] if minibatched else np.index_exp[:4]
    post_slice = np.index_exp[:, 4:] if minibatched else np.index_exp[4:]

    signals.bases = {key: tf.constant(val), var_key: tf.Variable(val)}

    x = signals.get_tensor_signal([(0, 4)], key, tf.float32, (4,), minibatched)
    with pytest.raises(BuildError, match="wrong dtype"):
        signals.scatter(x, tf.ones(update_shape, dtype=tf.float64))

    x_var = signals.get_tensor_signal([(0, 4)], var_key, tf.float32, (4,), minibatched)
    with pytest.raises(BuildError, match="should not be a Variable"):
        signals.scatter(x_var, tf.ones(update_shape))

    # update
    signals.scatter(x, tf.ones(update_shape))
    y = signals.bases[key]
    assert np.allclose(y[pre_slice], 1)
    assert np.allclose(y[post_slice], val[post_slice])
    assert signals.write_types["scatter_update"] == 1

    # increment, and reshaping val
    signals.scatter(
        x, tf.ones((minibatch_size, 2, 2) if minibatched else (2, 2)), mode="inc"
    )
    y = signals.bases[key]
    assert np.allclose(y[pre_slice], 2)
    assert np.allclose(y[post_slice], val[post_slice])
    assert signals.write_types["scatter_add"] == 1

    # recognize assignment to full array
    x = signals.get_tensor_signal(
        [(0, var_size)], key, tf.float32, (var_size,), minibatched
    )
    y = tf.ones((minibatch_size, var_size) if minibatched else (var_size,))
    signals.scatter(x, y)
    assert signals.bases[key] is y
    assert signals.write_types["assign"] == 1
Exemple #13
0
def test_signal_dict_gather(minibatched):
    minibatch_size = 3
    var_size = 19
    signals = SignalDict(tf.float32, minibatch_size)

    key = object()
    val = np.random.random(
        (minibatch_size, var_size) if minibatched else (var_size,)
    ).astype(np.float32)
    gathered_val = val[:, :4] if minibatched else val[:4]
    signals.bases = {key: tf.constant(val, dtype=tf.float32)}

    x = signals.get_tensor_signal([(0, 4)], key, tf.float32, (4,), minibatched)

    # sliced read
    assert np.allclose(signals.gather(x), gathered_val)
    assert signals.read_types["strided_slice"] == 1

    # read with reshape
    x = signals.get_tensor_signal([(0, 4)], key, tf.float32, (2, 2), minibatched)
    y = signals.gather(x)
    shape = (minibatch_size, 2, 2) if minibatched else (2, 2)
    assert y.shape == shape
    assert np.allclose(y, gathered_val.reshape(shape))
    assert signals.read_types["strided_slice"] == 2

    # gather read
    x = signals.get_tensor_signal([(0, 4)], key, tf.float32, (4,), minibatched)
    y = signals.gather(x, force_copy=True)
    assert signals.read_types["gather"] == 1

    x = signals.get_tensor_signal(
        ((0, 1), (0, 1), (3, 4), (3, 4)), key, tf.float32, (4,), minibatched
    )
    assert np.allclose(
        signals.gather(x), val[:, [0, 0, 3, 3]] if minibatched else val[[0, 0, 3, 3]]
    )
    assert signals.read_types["gather"] == 2

    # reading from full array
    x = signals.get_tensor_signal(
        [(0, var_size)], key, tf.float32, (var_size,), minibatched
    )
    y = signals.gather(x)
    assert y is signals.bases[key]
    assert signals.read_types["identity"] == 1

    # reading from strided full array
    x = signals.get_tensor_signal(
        tuple((i * 2, i * 2 + 1) for i in range(var_size // 2 + 1)),
        key,
        tf.float32,
        (var_size // 2 + 1,),
        minibatched,
    )
    y = signals.gather(x)
    assert y is not signals.bases[key]
    assert signals.read_types["gather"] == 3