Exemple #1
0
def test_translate(Simulator, seed):
    with spa.Network(seed=seed) as model:
        model.buffer1 = spa.State(vocab=16)
        model.buffer2 = spa.State(vocab=32)

        spa.sym.A >> model.buffer1
        spa.translate(model.buffer1, model.buffer2.vocab,
                      populate=True) >> model.buffer2

    with model:
        p = nengo.Probe(model.buffer2.output, synapse=0.03)

    with Simulator(model) as sim:
        sim.run(0.2)

    match = np.dot(sim.data[p], model.buffer2.vocab.parse('A').v)
    assert match[199] > 0.8
def test_translate(rng):
    v1 = spa.Vocabulary(16, pointer_gen=rng)
    v1.populate('A; B')
    v2 = spa.Vocabulary(16, pointer_gen=rng)
    v2.populate('A; B')

    assert_allclose(spa.translate(PointerSymbol('A', TVocabulary(v1)),
                                  v2).evaluate().dot(v2['A']),
                    1.,
                    atol=0.2)
Exemple #3
0
def test_translate(rng):
    v1 = spa.Vocabulary(16, pointer_gen=rng)
    v1.populate("A; B")
    v2 = spa.Vocabulary(16, pointer_gen=rng)
    v2.populate("A; B")

    assert_allclose(
        spa.translate(PointerSymbol("A", TVocabulary(v1)),
                      v2).evaluate().dot(v2["A"]),
        1.0,
        atol=0.2,
    )
Exemple #4
0
 def v_sent(self):
     """
     create the vocabulary of short sentences, combining names with
     propositions
     """
     self.vsent = spa.Vocabulary(dimensions=n_class)
     for p in self.pre:
         wp = spa.translate(self.vpre[p], self.words, populate=False)
         for o1 in self.obj1:
             wo1 = self.words[o1] * wp
             for o2 in self.obj2:
                 s = wo1 + self.words[o2]
                 k = "{}_{}_{}".format(o1, p, o2)
                 self.vsent.add(k, s.v)
Exemple #5
0
 def __init__( self, seed=1 ):
     """
     build the nengo network
     """
     self.probes = {}
     self.nodes  = {}
     self.net    = spa.Network( seed=seed )
     with self.net:
         self.node( Vision(), "cnn" )
         self.probe( self.nodes[ "cnn" ], "cnn_result" )
         c   = nengo.Config( nengo.Ensemble )
         c[ nengo.Ensemble ].neuron_type = nengo.Direct()
         with c:
             o1  = spa.State( vocab=vocabs.words, subdimensions=n_class/2, label="obj1_state" )
             o2  = spa.State( vocab=vocabs.words, subdimensions=n_class/2, label="obj2_state" )
         s_on    = spa.State( vocab=vocabs.vsent, subdimensions=n_class/2, label="sentence_ON" )
         nengo.Connection( self.nodes[ "cnn" ][ : n_class ], o1.input )
         nengo.Connection( self.nodes[ "cnn" ][ n_class : ], o2.input )
         on  = spa.translate( vocabs.vpre[ 'ON' ], vocabs.words, populate=False )
         spa.translate( o1 * on  + o2, vocabs.vsent, populate=False ) >> s_on
         self.probe( o1.output, "obj1_result" )
         self.probe( o2.output, "obj2_result" )
         self.probe( s_on.output, "s_ON_result" )
Exemple #6
0
def test_dynamic_translate(Simulator, rng):
    v1 = spa.Vocabulary(64, pointer_gen=rng)
    v1.populate("A; B")
    v2 = spa.Vocabulary(64, pointer_gen=rng)
    v2.populate("A; B")

    with spa.Network() as model:
        source = spa.Transcode("A", output_vocab=v1)
        x = spa.translate(source, v2)
        p = nengo.Probe(x.construct(), synapse=0.03)

    with nengo.Simulator(model) as sim:
        sim.run(0.5)

    assert_sp_close(sim.trange(), sim.data[p], v2["A"], skip=0.3, atol=0.2)
Exemple #7
0
    PRIM = spa.Bind(neurons_per_dimension=200, vocab=vocab, unbind_right=True)
    GET_PRIM = spa.WTAAssocMem(threshold=.5,
                               input_vocab=PRIM.vocab,
                               mapping=['GET_V', 'GET_COM', 'GET_ADD'],
                               n_neurons=50,
                               function=lambda x: x > 0)
    SET_PRIM = spa.WTAAssocMem(threshold=.5,
                               input_vocab=PRIM.vocab,
                               mapping=['SET_COM', 'SET_ADD', 'SET_M'],
                               n_neurons=50,
                               function=lambda x: x > 0)
    PRIM >> GET_PRIM
    PRIM >> SET_PRIM

    input_INSTRUCTIONS >> PRIM.input_left
    spa.translate(clean_POS, vocab) >> PRIM.input_right

    SET_exec = spa.Transcode(input_vocab=vocab, output_vocab=vocab)
    GET_exec = spa.Transcode(input_vocab=vocab, output_vocab=vocab)

    # GET selector
    with spa.Network(label='GET selector') as GET_selector:
        GET_selector.labels = []
        with spa.ActionSelection() as GET_selector.AS:

            GET_selector.labels.append("GET V (FIXATE)")
            spa.ifmax(GET_selector.labels[-1], BG_bias + FIXATE_detector,
                      V.preconscious >> GW.AMs[V].input, s.D1 >> POS.input,
                      s.D1 * clean_POS >> INCREMENT.input)

            # GET_selector.labels.append("GET V")
Exemple #8
0
###########
# Model 9 #
###########

# translating between vocabularies
v1 = spa.Vocabulary(dim)
v1.populate('A; B')
v2 = spa.Vocabulary(dim)
v2.populate('A; B')

with spa.Network() as model:
    state_1 = spa.State(v1)
    state_2 = spa.State(v2)

    spa.translate(state_2, v1) >> state_1
    spa.sym.A >> state_2

    probe = nengo.Probe(state_1.output, synapse=0.01)

with nengo.Simulator(model) as sim:
    sim.run(0.5)

plt.plot(sim.trange(), v1['A'].dot(sim.data[probe].T))
plt.plot(sim.trange(), v2['A'].dot(sim.data[probe].T))
plt.xlabel("Time [s]")
plt.ylabel("Similarity")
plt.legend(["v1['A']", "v2['A']"])
plt.show()

print(model.vocabs)
Exemple #9
0
plt.ylabel("Similarity")
plt.legend(loc='best')

plt.show()
"""
d1 = 16
d2 = 32
vocab1 = spa.Vocabulary(d1)
vocab1.populate('A')
vocab2 = spa.Vocabulary(d2)
vocab2.populate('A')

with spa.Network() as model:
    state1 = spa.State(vocab=vocab1)
    state2 = spa.State(vocab=vocab2)
    spa.sym.A >> state1
    spa.translate(state1, vocab2) >> state2

    p = nengo.Probe(state2.output, synapse=0.03)

with nengo.Simulator(model) as sim:
    sim.run(0.5)

#plt.plot(sim.trange(), spa.similarity(sim.data[p], vocab1), label='vocab1')
plt.plot(sim.trange(), spa.similarity(sim.data[p], vocab2), label='vocab2')
plt.xlabel("Time [s]")
plt.ylabel("Similarity")
plt.legend(loc='best')
plt.show()