def default_data(block=None, n_chidx=1, n_units=1): # generate new block if none provided, otherwise attach to provided block if block is None: block = Block() for id in range(n_chidx): sorting_hash = elephant.spike_sorting.SpikeSorter.get_sorting_hash({ 'channel_index': id, 'random annotation': np.random.randint(0, 10**10) }) chidx = ChannelIndex([], sorting_hash=sorting_hash) chidx.block = block block.channel_indexes.append(chidx) for chidx in block.channel_indexes: for id in range(n_units): unit = Unit(unit_id=id) chidx.units.append(unit) unit.channel_index = chidx for st_id in range(id): st = SpikeTrain(np.random.uniform(0, st_id, 1) * pq.s, t_start=0 * pq.s, t_stop=st_id * pq.s, spiketrain_id=st_id) unit.spiketrains.append(st) st.unit = unit block.create_relationship() return block
def test_write_read_single_spike(self): block1 = Block() seg = Segment('segment1') spiketrain1 = SpikeTrain([1] * pq.s, t_stop=10 * pq.s, sampling_rate=1 * pq.Hz) spiketrain1.annotate(yep='yop') block1.segments.append(seg) seg.spiketrains.append(spiketrain1) # write block filename = self.get_local_path('matlabiotestfile.mat') io1 = self.ioclass(filename) io1.write_block(block1) # read block io2 = self.ioclass(filename) block2 = io2.read_block() self.assertEqual(block1.segments[0].spiketrains[0], block2.segments[0].spiketrains[0]) # test annotations spiketrain2 = block2.segments[0].spiketrains[0] assert 'yep' in spiketrain2.annotations assert spiketrain2.annotations['yep'] == 'yop'
def saveCCData(self): currentAmpsSet = np.sort( list(set([float(x.magnitude) for x in self.currentAmps]))).tolist() self.CCData = Block('Current Clamp Data') self.CCData.segments = [ Segment(name='Current Of ' + unicode(iAmp) + 'nA') for iAmp in currentAmpsSet ] for iAmp, vTrace in zip(self.currentAmps, self.voltageTraces): presSegInd = currentAmpsSet.index(iAmp) self.CCData.segments[presSegInd].analogsignals.append(vTrace) self.CCData.segments[presSegInd].events.append( Event(time=vTrace.t_start, label=unicode(iAmp))) self.CCData.segments[presSegInd].epochs.append( Epoch(time=vTrace.t_start - 50 * qu.ms, duration=50 * qu.ms, label=unicode( self.restingMembranePotentials[presSegInd]))) writer = NeoHdf5IO( os.path.join( os.path.split(self.ephysFile)[0], self.expName + '_CC.hdf5')) writer.write_block(self.CCData) writer.close()
def test_write_read_single_spike(self): block1 = Block() seg = Segment('segment1') spiketrain = SpikeTrain([1] * pq.s, t_stop=10 * pq.s, sampling_rate=1 * pq.Hz) block1.segments.append(seg) seg.spiketrains.append(spiketrain) # write block filename = BaseTestIO.get_filename_path(self, 'matlabiotestfile.mat') io1 = self.ioclass(filename) io1.write_block(block1) # read block io2 = self.ioclass(filename) block2 = io2.read_block() self.assertEqual(block1.segments[0].spiketrains[0], block2.segments[0].spiketrains[0])
def setUp(self): self.block = default_data(n_chidx=1, n_units=1) sorting_file = 'testdata' if os.path.exists(sorting_file + '_spikesorting.hdf5'): os.remove(sorting_file + '_spikesorting.hdf5') self.sorting_hash = self.block.channel_indexes[0].annotations[ 'sorting_hash'] save_spikesorting(sorting_file, self.block, sorting_hash=self.sorting_hash) self.new_block = Block(type='loaded block') load_spikesorting(self.new_block, sorting_file='testdata', sorting_hash=self.sorting_hash) self.object_classes = [ 'ChannelIndex', 'Unit', 'SpikeTrain', 'Segment', 'AnalogSignal' ]
from neo import (Block, Segment, AnalogSignal, IrregularlySampledSignal, Event, Epoch, SpikeTrain, ChannelIndex, Unit) from neo.io.nixio import NixIO import numpy as np import quantities as pq block1 = Block(name="nix-raw-block1", description="The 1st block") block2 = Block(name="nix-raw-block2", description="The 2nd block") for block in (block1, block2): ch_count = 0 asig_count = 0 nsegments = 2 x = np.linspace(0,1,30) y = np.linspace(0,1,50) z = np.linspace(0,1,100) data_a = np.transpose((x,)) data_b = np.transpose((y,y,y)) data_c = np.transpose((z,z,z,z,z)) nchannels = data_a.shape[1] + data_b.shape[1] + data_c.shape[1] # which one is correct nchannels = 3 sampling_rate = pq.Quantity(1, "Hz") indexes = np.arange(nchannels) for cidx, signal in enumerate([data_a, data_b, data_c]): indexes = np.arange(signal.shape[1]) + ch_count ch_count += signal.shape[1]
pre = -10 * pq.ms post = 15 * pq.ms epoch = add_epoch( data_segment, event1=start_event, event2=None, pre=pre, post=post, attach_result=False, name='analysis_epochs') # Create new segments of data cut according to the analysis epochs of the # 'analysis_epochs' Neo Epoch object. The time axes of all segments are aligned # such that each segment starts at time 0 (parameter reset_times); annotations # describing the analysis epoch are carried over to the segments. A new Neo # Block named "data_cut_to_analysis_epochs" is created to capture all cut # analysis epochs. cut_trial_block = Block(name="data_cut_to_analysis_epochs") cut_trial_block.segments = cut_segment_by_epoch( data_segment, epoch, reset_time=True) # ============================================================================= # Plot data # ============================================================================= # Determine the first existing trial ID i from the Event object containing all # start events. Then, by calling the filter() function of the Neo Block # "data_cut_to_analysis_epochs" containing the data cut into the analysis # epochs, we ask to return all Segments annotated by the behavioral trial ID i. # In this case this call should return one matching analysis epoch around TS-ON # belonging to behavioral trial ID i. For monkey N, this is trial ID 1, for # monkey L this is trial ID 2 since trial ID 1 is not a correct trial. trial_id = int(np.min(start_event.annotations['trial_id']))
def uploadToGNode(self): blk = Block() blk.name = self.blockNameProc blk.file_origin = self.originalFile blk.file_datetime = asctime() blk.description = 'Regions of Interest of electrophysiological recordings of a vibration sensitive neuron' blk = self.GNodeSession.set(blk) expSec = self.mainSec.sections[self.expName + '_Experiment'] freqProp = expSec.properties['FrequenciesUsed'] writtenFreq = getValuesOfProperty(freqProp) durProp = expSec.properties['PulseInputDurations'] writtenDur = getValuesOfProperty(durProp) intervalProp = expSec.properties['PulseInputIntervals'] writtenIntervals = getValuesOfProperty(intervalProp) blk.section = expSec blk = self.GNodeSession.set(blk) count = 0 for (freq, amp, resp, stim, dur, inter) in \ zip(self.stimFreqs, self.stimAmps, self.responseVTraces, self.stimTraces, self.stimDur, self.stimInterval): count += 1 print 'Uploading Segment' + str(count) seg = self.GNodeSession.set( Segment(name=blk.name + '_seg' + str(count), index=count)) seg.block = blk seg = self.GNodeSession.set(seg) resp.name = 'Membrane Potential' resp.description = 'Response to the associated vibration stimulus applied to the antenna.' stim.name = 'Vibration Stimulus' stim.description = 'Vibration Stimulus applied to the antenna' resp = self.GNodeSession.set(resp) stim = self.GNodeSession.set(stim) resp.segment = seg stim.segment = seg resp = self.GNodeSession.set(resp) stim = self.GNodeSession.set(stim) metadata = [] metadata.append(freqProp.values[find_nearest_Id(writtenFreq, freq)]) if min(abs(writtenDur - dur)).magnitude < 5: metadata.append(durProp.values[find_nearest_Id( writtenDur, dur)]) metadata.append(intervalProp.values[find_nearest_Id( writtenIntervals, inter)]) seg.metadata = metadata seg = self.GNodeSession.set(seg) print 'Uploading Segment' + str(count) + ' Done' import ipdb ipdb.set_trace()
def uploadToGNode(self): self.csvData = extractCSVMetaData(self.csvFile, self.expName) self.dataBlockToUpload = Block(name=self.blockName, file_origin=self.expName) raw_seg = Segment(name='rawData', index=0) self.vibrationSignal.name = 'Vibration Stimulus' self.vibrationSignal.description = 'Vibration Stimulus applied to the honey bee antenna' self.voltageSignal.name = 'Membrane Potential' self.voltageSignal.description = 'Vibration Sensitive inter-neuron membrane potential' self.vibrationSignal.segment = raw_seg self.voltageSignal.segment = raw_seg raw_seg.analogsignals.append(self.vibrationSignal) raw_seg.analogsignals.append(self.voltageSignal) if len(self.dataBlock.segments[0].analogsignals) > 2: self.currentSignal.name = 'Current Signal' self.currentSignal.description = 'Indicates whether a current is being injected or not. The magnitudes ' \ 'are given in an event array' self.currentSignal.segment = raw_seg raw_seg.analogsignals.append(self.currentSignal) if len(self.dataBlock.segments[0].eventarrays) == 2: raw_seg.eventarrays.append(self.dataBlock.segments[0].eventarrays[1]) self.dataBlock.segments[0].eventarrays[1].segment = raw_seg raw_seg.block = self.dataBlockToUpload self.dataBlockToUpload.segments.append(raw_seg) self.doc = odml.Document(author="Ajayrama K.", version="1.0") self.mainSec = odml.Section(name=self.expName, type='experiment') self.doc.append(self.mainSec) expSummary = odml.Section(name='VibrationStimulus', type='experiment/electrophysiology') quantity_parser = lambda lst: [odml.Value(data=float(x), unit=x.dimensionality.string) for x in lst] frequencies = quantity_parser(self.csvData['freqs']) if frequencies: expSummary.append(odml.Property(name='FrequenciesUsed', value=frequencies)) durations = quantity_parser(self.csvData['pulse'][0]) if durations: expSummary.append(odml.Property(name='PulseInputDurations', value=durations)) intervals = quantity_parser(self.csvData['pulse'][1]) if intervals: expSummary.append(odml.Property(name='PulseInputIntervals', value=intervals)) expSummary.append(odml.Property(name='SpontaneousActivityPresence', value=self.csvData['spont'])) if not self.csvData['resp'] == '': expSummary.append(odml.Property(name='NatureOfResponse', value=self.csvData['resp'])) self.mainSec.append(expSummary) print asctime() + ' : Uploading metadata' doc = self.session.set_all(self.doc) print asctime() + ' : Uploading metadata Done' print asctime() + ' : Refreshing metadata' mainSec = self.session.get(doc.sections[0].location, refresh=True, recursive=True) print asctime() + ' : Refreshing metadata Done' self.dataBlockToUpload.section = mainSec print asctime() + ' : Uploading Data' blkLoc = self.session.set_all(self.dataBlockToUpload) print asctime() + ' : Uploading Data Done'
""" Example for usecases.rst """ from itertools import cycle import numpy as np from quantities import ms, mV, kHz import matplotlib.pyplot as plt from neo import Block, Segment, ChannelView, Group, SpikeTrain, AnalogSignal store_signals = False block = Block(name="probe data", tetrode_ids=["Tetrode #1", "Tetrode #2"]) block.segments = [ Segment(name="trial #1", index=0), Segment(name="trial #2", index=1), Segment(name="trial #3", index=2) ] n_units = {"Tetrode #1": 2, "Tetrode #2": 5} # Create a group for each neuron, annotate each group with the tetrode from which it was recorded groups = [] counter = 0 for tetrode_id, n in n_units.items(): groups.extend([ Group(name=f"neuron #{counter + i + 1}", tetrode_id=tetrode_id) for i in range(n) ]) counter += n block.groups.extend(groups)
from neo import (Block, Segment, AnalogSignal, IrregularlySampledSignal, Event, Epoch, SpikeTrain, ChannelIndex, Unit) from neo.io.nixio import NixIO import numpy as np import quantities as pq for b in range(3): # Create a Block called example block = Block("example" + str(b), description="The root block for this example") # Create a Segment called seg-ex1 and attach it to the Block seg_a = Segment("seg-ex1", description="Segment one") block.segments.append(seg_a) # A second segment with an added comment # The comment is an "annotation"; any keyword argument can be used seg_b = Segment("seg-ex2", description="Segment two", comment="Second recording set") block.segments.append(seg_b) # Generate 3 fake data signals using numpy's random function # The shapes of the arrays are arbitrary data_a = np.random.random((300, 10)) data_b = np.random.random((1200, 3)) data_c = np.random.random((8000, 5)) # random sampling times for data_b data_b_t = np.cumsum(np.random.random(1200))