Exemple #1
0
from neon.optimizers import GradientDescentMomentum
from neon.transforms import Rectlin, Logistic, CrossEntropyBinary, Misclassification
from neon.util.argparser import NeonArgparser
from neon import logger as neon_logger
import h5py
import numpy as np

# parse the command line arguments
parser = NeonArgparser(__doc__)

args = parser.parse_args()

# load up the mnist data set
dataset = MNIST(path=args.data_dir)
# split into train and tests sets
(X_train, y_train), (X_test, y_test), nclass = dataset.load_data()

# generate the HDF5 file
datsets = {'train': (X_train, y_train),
           'test': (X_test, y_test)}

for ky in ['train', 'test']:
    df = h5py.File('mnist_%s.h5' % ky, 'w')

    # input images
    in_dat = datsets[ky][0]
    df.create_dataset('input', data=in_dat)
    df['input'].attrs['lshape'] = (1, 28, 28)  # (C, H, W)

    # can also add in a mean image or channel by channel mean for color image
    # for mean subtraction during data iteration
Exemple #2
0
def test_model_serialize(backend_default, data):
    dataset = MNIST(path=data)
    (X_train, y_train), (X_test, y_test), nclass = dataset.load_data()
    train_set = ArrayIterator(
        [X_train, X_train], y_train, nclass=nclass, lshape=(1, 28, 28))

    init_norm = Gaussian(loc=0.0, scale=0.01)

    # initialize model
    path1 = Sequential([Conv((5, 5, 16), init=init_norm, bias=Constant(0), activation=Rectlin()),
                        Pooling(2),
                        Affine(nout=20, init=init_norm, bias=init_norm, activation=Rectlin())])
    path2 = Sequential([Affine(nout=100, init=init_norm, bias=Constant(0), activation=Rectlin()),
                        Dropout(keep=0.5),
                        Affine(nout=20, init=init_norm, bias=init_norm, activation=Rectlin())])
    layers = [MergeMultistream(layers=[path1, path2], merge="stack"),
              Affine(nout=20, init=init_norm, batch_norm=True, activation=Rectlin()),
              Affine(nout=10, init=init_norm, activation=Logistic(shortcut=True))]

    tmp_save = 'test_model_serialize_tmp_save.pickle'
    mlp = Model(layers=layers)
    mlp.optimizer = GradientDescentMomentum(learning_rate=0.1, momentum_coef=0.9)
    mlp.cost = GeneralizedCost(costfunc=CrossEntropyBinary())
    mlp.initialize(train_set, cost=mlp.cost)
    n_test = 3
    num_epochs = 3
    # Train model for num_epochs and n_test batches
    for epoch in range(num_epochs):
        for i, (x, t) in enumerate(train_set):
            x = mlp.fprop(x)
            delta = mlp.cost.get_errors(x, t)
            mlp.bprop(delta)
            mlp.optimizer.optimize(mlp.layers_to_optimize, epoch=epoch)
            if i > n_test:
                break

    # Get expected outputs of n_test batches and states of all layers
    outputs_exp = []
    pdicts_exp = [l.get_params_serialize() for l in mlp.layers_to_optimize]
    for i, (x, t) in enumerate(train_set):
        outputs_exp.append(mlp.fprop(x, inference=True))
        if i > n_test:
            break

    # Serialize model
    mlp.save_params(tmp_save, keep_states=True)

    # Load model
    mlp = Model(tmp_save)

    mlp.initialize(train_set)
    outputs = []
    pdicts = [l.get_params_serialize() for l in mlp.layers_to_optimize]
    for i, (x, t) in enumerate(train_set):
        outputs.append(mlp.fprop(x, inference=True))
        if i > n_test:
            break

    # Check outputs, states, and params are the same
    for output, output_exp in zip(outputs, outputs_exp):
        assert allclose_with_out(output.get(), output_exp.get())

    for pd, pd_exp in zip(pdicts, pdicts_exp):
        for s, s_e in zip(pd['states'], pd_exp['states']):
            if isinstance(s, list):  # this is the batch norm case
                for _s, _s_e in zip(s, s_e):
                    assert allclose_with_out(_s, _s_e)
            else:
                assert allclose_with_out(s, s_e)
        for p, p_e in zip(pd['params'], pd_exp['params']):
            assert type(p) == type(p_e)
            if isinstance(p, list):  # this is the batch norm case
                for _p, _p_e in zip(p, p_e):
                    assert allclose_with_out(_p, _p_e)
            elif isinstance(p, np.ndarray):
                assert allclose_with_out(p, p_e)
            else:
                assert p == p_e

    os.remove(tmp_save)
Exemple #3
0
from neon.layers import GeneralizedCost, Affine, Sequential, MergeMultistream
from neon.models import Model
from neon.optimizers import GradientDescentMomentum
from neon.transforms import Rectlin, Logistic, CrossEntropyBinary
from neon.callbacks.callbacks import Callbacks
from neon.util.argparser import NeonArgparser

# parse the command line arguments
parser = NeonArgparser(__doc__)
args = parser.parse_args()

# hyperparameters
num_epochs = args.epochs

dataset = MNIST(path=args.data_dir)
(X_train, y_train), (X_test, y_test), nclass = dataset.load_data()
train_set = ArrayIterator([X_train, X_train],
                          y_train,
                          nclass=nclass,
                          lshape=(1, 28, 28))
for example in train_set:
    import pdb
    pdb.set_trace()
valid_set = ArrayIterator([X_test, X_test],
                          y_test,
                          nclass=nclass,
                          lshape=(1, 28, 28))

# weight initialization
init_norm = Gaussian(loc=0.0, scale=0.01)
from neon.transforms import Softmax, CrossEntropyMulti, Rectlin, Misclassification
from neon.models import Model
from neon.data import ArrayIterator, MNIST
from neon.callbacks.callbacks import Callbacks
from callbacks.callbacks import TrainByStageCallback, FuzzyPruneCallback

logger = logging.getLogger()
logger.setLevel(logging.DEBUG)

parser = NeonArgparser(__doc__)
args = parser.parse_args()
be = gen_backend(backend='gpu', batch_size=128, datatype=np.float32)

# setup a dataset iterator
mnist = MNIST(path='../dataset/mnist')
(X_train, y_train), (X_test, y_test), nclass = mnist.load_data()
train_set = ArrayIterator(X_train, y_train, nclass=nclass, lshape=(1, 28, 28))
valid_set = ArrayIterator(X_test, y_test, nclass=nclass, lshape=(1, 28, 28))

# define model
nfilters = [20, 50, 500]
# nfilters = [24, 56, 500]
init_w = Gaussian(scale=0.01)
relu = Rectlin()
common_params = dict(init=init_w, activation=relu)
layers = [
    Conv((5, 5, nfilters[0]), bias=Constant(0.1), padding=0, **common_params),
    Pooling(2, strides=2, padding=0),
    Conv((5, 5, nfilters[1]), bias=Constant(0.1), padding=0, **common_params),
    Pooling(2, strides=2, padding=0),
    Affine(nout=nfilters[2], bias=Constant(0.1), **common_params),
Exemple #5
0
def test_model_serialize(backend_default, data):
    dataset = MNIST(path=data)
    (X_train, y_train), (X_test, y_test), nclass = dataset.load_data()
    train_set = ArrayIterator([X_train, X_train],
                              y_train,
                              nclass=nclass,
                              lshape=(1, 28, 28))

    init_norm = Gaussian(loc=0.0, scale=0.01)

    # initialize model
    path1 = Sequential([
        Conv((5, 5, 16),
             init=init_norm,
             bias=Constant(0),
             activation=Rectlin()),
        Pooling(2),
        Affine(nout=20, init=init_norm, bias=init_norm, activation=Rectlin())
    ])
    path2 = Sequential([
        Affine(nout=100,
               init=init_norm,
               bias=Constant(0),
               activation=Rectlin()),
        Dropout(keep=0.5),
        Affine(nout=20, init=init_norm, bias=init_norm, activation=Rectlin())
    ])
    layers = [
        MergeMultistream(layers=[path1, path2], merge="stack"),
        Affine(nout=20, init=init_norm, batch_norm=True, activation=Rectlin()),
        Affine(nout=10, init=init_norm, activation=Logistic(shortcut=True))
    ]

    tmp_save = 'test_model_serialize_tmp_save.pickle'
    mlp = Model(layers=layers)
    mlp.optimizer = GradientDescentMomentum(learning_rate=0.1,
                                            momentum_coef=0.9)
    mlp.cost = GeneralizedCost(costfunc=CrossEntropyBinary())
    mlp.initialize(train_set, cost=mlp.cost)
    n_test = 3
    num_epochs = 3
    # Train model for num_epochs and n_test batches
    for epoch in range(num_epochs):
        for i, (x, t) in enumerate(train_set):
            x = mlp.fprop(x)
            delta = mlp.cost.get_errors(x, t)
            mlp.bprop(delta)
            mlp.optimizer.optimize(mlp.layers_to_optimize, epoch=epoch)
            if i > n_test:
                break

    # Get expected outputs of n_test batches and states of all layers
    outputs_exp = []
    pdicts_exp = [l.get_params_serialize() for l in mlp.layers_to_optimize]
    for i, (x, t) in enumerate(train_set):
        outputs_exp.append(mlp.fprop(x, inference=True))
        if i > n_test:
            break

    # Serialize model
    mlp.save_params(tmp_save, keep_states=True)

    # Load model
    mlp = Model(tmp_save)

    mlp.initialize(train_set)
    outputs = []
    pdicts = [l.get_params_serialize() for l in mlp.layers_to_optimize]
    for i, (x, t) in enumerate(train_set):
        outputs.append(mlp.fprop(x, inference=True))
        if i > n_test:
            break

    # Check outputs, states, and params are the same
    for output, output_exp in zip(outputs, outputs_exp):
        assert np.allclose(output.get(), output_exp.get())

    for pd, pd_exp in zip(pdicts, pdicts_exp):
        for s, s_e in zip(pd['states'], pd_exp['states']):
            if isinstance(s, list):  # this is the batch norm case
                for _s, _s_e in zip(s, s_e):
                    assert np.allclose(_s, _s_e)
            else:
                assert np.allclose(s, s_e)
        for p, p_e in zip(pd['params'], pd_exp['params']):
            assert type(p) == type(p_e)
            if isinstance(p, list):  # this is the batch norm case
                for _p, _p_e in zip(p, p_e):
                    assert np.allclose(_p, _p_e)
            elif isinstance(p, np.ndarray):
                assert np.allclose(p, p_e)
            else:
                assert p == p_e

    os.remove(tmp_save)