Exemple #1
0
def gradient_calc(seq_len, input_size, hidden_size, batch_size,
                  epsilon=None, rand_scale=None, inp_bl=None):
    NervanaObject.be.bsz = NervanaObject.be.batch_size = batch_size

    input_shape = (input_size, seq_len * batch_size)

    # generate input if one is not given
    if inp_bl is None:
        inp_bl = np.random.randn(*input_shape)

    # neon gru instance
    gru = GRU(hidden_size, init=Gaussian(), activation=Tanh(), gate_activation=Logistic())
    inpa = gru.be.array(np.copy(inp_bl))

    # run fprop on the baseline input
    gru.configure((input_size, seq_len))
    gru.prev_layer = True
    gru.allocate()
    gru.set_deltas([gru.be.iobuf(gru.in_shape)])
    out_bl = gru.fprop(inpa).get()

    # random scaling/hash to generate fake loss
    if rand_scale is None:
        rand_scale = np.random.random(out_bl.shape) * 2.0 - 1.0
    # loss function would be:
    # loss_bl = np.sum(rand_scale * out_bl)

    # run back prop with rand_scale as the errors
    # use copy to avoid any interactions
    deltas_neon = gru.bprop(gru.be.array(np.copy(rand_scale))).get()

    # add a perturbation to each input element
    grads_est = np.zeros(inpa.shape)
    inp_pert = inp_bl.copy()
    for pert_ind in range(inpa.size):
        save_val = inp_pert.flat[pert_ind]

        inp_pert.flat[pert_ind] = save_val + epsilon
        reset_gru(gru)
        gru.allocate()
        out_pos = gru.fprop(gru.be.array(inp_pert)).get()

        inp_pert.flat[pert_ind] = save_val - epsilon
        reset_gru(gru)
        gru.allocate()
        out_neg = gru.fprop(gru.be.array(inp_pert)).get()

        # calculate the loss with perturbations
        loss_pos = np.sum(rand_scale*out_pos)
        loss_neg = np.sum(rand_scale*out_neg)
        # compute the gradient estimate
        grad = 0.5*(loss_pos-loss_neg)/epsilon

        grads_est.flat[pert_ind] = grad

        # reset the perturbed input element
        inp_pert.flat[pert_ind] = save_val

    del gru
    return (grads_est, deltas_neon)
Exemple #2
0
def gradient_calc(seq_len, input_size, hidden_size, batch_size,
                  epsilon=None, rand_scale=None, inp_bl=None):
    NervanaObject.be.bsz = NervanaObject.be.batch_size = batch_size

    input_shape = (input_size, seq_len * batch_size)

    # generate input if one is not given
    if inp_bl is None:
        inp_bl = np.random.randn(*input_shape)

    # neon gru instance
    gru = GRU(hidden_size, init=Gaussian(), activation=Tanh(), gate_activation=Logistic())
    inpa = gru.be.array(np.copy(inp_bl))

    # run fprop on the baseline input
    gru.configure((input_size, seq_len))
    gru.prev_layer = True
    gru.allocate()
    gru.set_deltas([gru.be.iobuf(gru.in_shape)])
    out_bl = gru.fprop(inpa).get()

    # random scaling/hash to generate fake loss
    if rand_scale is None:
        rand_scale = np.random.random(out_bl.shape) * 2.0 - 1.0
    # loss function would be:
    # loss_bl = np.sum(rand_scale * out_bl)

    # run back prop with rand_scale as the errors
    # use copy to avoid any interactions
    deltas_neon = gru.bprop(gru.be.array(np.copy(rand_scale))).get()

    # add a perturbation to each input element
    grads_est = np.zeros(inpa.shape)
    inp_pert = inp_bl.copy()
    for pert_ind in range(inpa.size):
        save_val = inp_pert.flat[pert_ind]

        inp_pert.flat[pert_ind] = save_val + epsilon
        reset_gru(gru)
        gru.allocate()
        out_pos = gru.fprop(gru.be.array(inp_pert)).get()

        inp_pert.flat[pert_ind] = save_val - epsilon
        reset_gru(gru)
        gru.allocate()
        out_neg = gru.fprop(gru.be.array(inp_pert)).get()

        # calculate the loss with perturbations
        loss_pos = np.sum(rand_scale * out_pos)
        loss_neg = np.sum(rand_scale * out_neg)
        # compute the gradient estimate
        grad = 0.5 / float(epsilon) * (loss_pos - loss_neg)

        grads_est.flat[pert_ind] = grad

        # reset the perturbed input element
        inp_pert.flat[pert_ind] = save_val

    del gru
    return (grads_est, deltas_neon)
Exemple #3
0
def check_gru(seq_len, input_size, hidden_size,
              batch_size, init_func, inp_moms=[0.0, 1.0]):
    # init_func is the initializer for the model params
    # inp_moms is the [ mean, std dev] of the random input
    input_shape = (input_size, seq_len * batch_size)
    output_shape = (hidden_size, seq_len * batch_size)
    NervanaObject.be.bsz = NervanaObject.be.batch_size = batch_size

    # neon GRU
    gru = GRU(hidden_size,
              init_func,
              activation=Tanh(),
              gate_activation=Logistic())

    # generate random input tensor
    inp = np.random.rand(*input_shape)*inp_moms[1] + inp_moms[0]
    inpa = gru.be.array(inp)
    # generate random deltas tensor
    deltas = np.random.randn(*output_shape)

    # run neon fprop
    gru.configure((input_size, seq_len))
    gru.prev_layer = True
    gru.allocate()
    gru.set_deltas([gru.be.iobuf(gru.in_shape)])
    gru.fprop(inpa)

    # reference numpy GRU
    gru_ref = RefGRU(input_size, hidden_size)
    WGRU = gru_ref.weights

    # make ref weights and biases the same with neon model
    r_range = range(hidden_size)
    z_range = range(hidden_size, hidden_size * 2)
    c_range = range(hidden_size * 2, hidden_size * 3)

    WGRU[gru_ref.weights_ind_br][:] = gru.b.get()[r_range]
    WGRU[gru_ref.weights_ind_bz][:] = gru.b.get()[z_range]
    WGRU[gru_ref.weights_ind_bc][:] = gru.b.get()[c_range]

    WGRU[gru_ref.weights_ind_Wxr][:] = gru.W_input.get()[r_range]
    WGRU[gru_ref.weights_ind_Wxz][:] = gru.W_input.get()[z_range]
    WGRU[gru_ref.weights_ind_Wxc][:] = gru.W_input.get()[c_range]

    WGRU[gru_ref.weights_ind_Rhr][:] = gru.W_recur.get()[r_range]
    WGRU[gru_ref.weights_ind_Rhz][:] = gru.W_recur.get()[z_range]
    WGRU[gru_ref.weights_ind_Rhc][:] = gru.W_recur.get()[c_range]

    # transpose input X and do fprop
    # the reference code expects these shapes:
    # input_shape: (seq_len, input_size, batch_size)
    # output_shape: (seq_len, hidden_size, batch_size)
    inp_ref = inp.copy().T.reshape(
        seq_len, batch_size, input_size).swapaxes(1, 2)
    deltas_ref = deltas.copy().T.reshape(
        seq_len, batch_size, hidden_size).swapaxes(1, 2)

    (dWGRU_ref, h_ref_list, dh_ref_list,
        dr_ref_list, dz_ref_list, dc_ref_list) = gru_ref.lossFun(inp_ref,
                                                                 deltas_ref)

    print '====Verifying hidden states===='
    print allclose_with_out(gru.outputs.get(),
                            h_ref_list,
                            rtol=0.0,
                            atol=1.0e-5)

    print 'fprop is verified'

    # now test the bprop
    print 'Making sure neon GRU match numpy GRU in bprop'
    gru.bprop(gru.be.array(deltas))
    # grab the delta W from gradient buffer
    dWinput_neon = gru.dW_input.get()
    dWrecur_neon = gru.dW_recur.get()
    db_neon = gru.db.get()
    dWxr_neon = dWinput_neon[r_range]
    dWxz_neon = dWinput_neon[z_range]
    dWxc_neon = dWinput_neon[c_range]
    dWrr_neon = dWrecur_neon[r_range]
    dWrz_neon = dWrecur_neon[z_range]
    dWrc_neon = dWrecur_neon[c_range]
    dbr_neon = db_neon[r_range]
    dbz_neon = db_neon[z_range]
    dbc_neon = db_neon[c_range]

    drzc_neon = gru.rzhcan_delta_buffer.get()
    dr_neon = drzc_neon[r_range]
    dz_neon = drzc_neon[z_range]
    dc_neon = drzc_neon[c_range]

    dWxr_ref = dWGRU_ref[gru_ref.dW_ind_Wxr]
    dWxz_ref = dWGRU_ref[gru_ref.dW_ind_Wxz]
    dWxc_ref = dWGRU_ref[gru_ref.dW_ind_Wxc]
    dWrr_ref = dWGRU_ref[gru_ref.dW_ind_Rhr]
    dWrz_ref = dWGRU_ref[gru_ref.dW_ind_Rhz]
    dWrc_ref = dWGRU_ref[gru_ref.dW_ind_Rhc]
    dbr_ref = dWGRU_ref[gru_ref.dW_ind_br]
    dbz_ref = dWGRU_ref[gru_ref.dW_ind_bz]
    dbc_ref = dWGRU_ref[gru_ref.dW_ind_bc]

    # print '====Verifying hidden deltas ===='
    print '====Verifying r deltas ===='
    assert allclose_with_out(dr_neon,
                             dr_ref_list,
                             rtol=0.0,
                             atol=1.0e-5)

    print '====Verifying z deltas ===='
    assert allclose_with_out(dz_neon,
                             dz_ref_list,
                             rtol=0.0,
                             atol=1.0e-5)

    print '====Verifying hcan deltas ===='
    assert allclose_with_out(dc_neon,
                             dc_ref_list,
                             rtol=0.0,
                             atol=1.0e-5)

    print '====Verifying update on W_input===='
    print 'dWxr'
    assert allclose_with_out(dWxr_neon,
                             dWxr_ref,
                             rtol=0.0,
                             atol=1.0e-5)
    print 'dWxz'
    assert allclose_with_out(dWxz_neon,
                             dWxz_ref,
                             rtol=0.0,
                             atol=1.0e-5)
    print 'dWxc'
    assert allclose_with_out(dWxc_neon,
                             dWxc_ref,
                             rtol=0.0,
                             atol=1.0e-5)

    print '====Verifying update on W_recur===='

    print 'dWrr'
    assert allclose_with_out(dWrr_neon,
                             dWrr_ref,
                             rtol=0.0,
                             atol=1.0e-5)
    print 'dWrz'
    assert allclose_with_out(dWrz_neon,
                             dWrz_ref,
                             rtol=0.0,
                             atol=1.0e-5)
    print 'dWrc'
    assert allclose_with_out(dWrc_neon,
                             dWrc_ref,
                             rtol=0.0,
                             atol=1.0e-5)

    print '====Verifying update on bias===='
    print 'dbr'
    assert allclose_with_out(dbr_neon,
                             dbr_ref,
                             rtol=0.0,
                             atol=1.0e-5)
    print 'dbz'
    assert allclose_with_out(dbz_neon,
                             dbz_ref,
                             rtol=0.0,
                             atol=1.0e-5)
    print 'dbc'
    assert allclose_with_out(dbc_neon,
                             dbc_ref,
                             rtol=0.0,
                             atol=1.0e-5)

    print 'bprop is verified'

    return
Exemple #4
0
def check_gru(seq_len,
              input_size,
              hidden_size,
              batch_size,
              init_func,
              inp_moms=[0.0, 1.0],
              add_init_state=False):
    # init_func is the initializer for the model params
    # inp_moms is the [ mean, std dev] of the random input
    input_shape = (input_size, seq_len * batch_size)
    output_shape = (hidden_size, seq_len * batch_size)
    slice_shape = (hidden_size, batch_size)

    NervanaObject.be.bsz = NervanaObject.be.batch_size = batch_size

    # neon GRU
    gru = GRU(hidden_size,
              init_func,
              activation=Tanh(),
              gate_activation=Logistic())

    # generate random input tensor
    inp = np.random.rand(*input_shape) * inp_moms[1] + inp_moms[0]
    inp_dev = gru.be.array(inp)
    # generate random deltas tensor
    deltas = np.random.randn(*output_shape)

    # run neon fprop
    gru.configure((input_size, seq_len))
    gru.prev_layer = True
    gru.allocate()

    test_buffer = DeltasTree()
    gru.allocate_deltas(test_buffer)
    test_buffer.allocate_buffers()
    gru.set_deltas(test_buffer)

    if add_init_state:
        init_state = np.random.rand(*slice_shape) * inp_moms[1] + inp_moms[0]
        init_state_dev = gru.be.array(init_state)
        gru.fprop(inp_dev, init_state=init_state_dev)
    else:
        gru.fprop(inp_dev)

    # reference numpy GRU
    gru_ref = RefGRU(input_size, hidden_size)
    WGRU = gru_ref.weights

    # make ref weights and biases the same with neon model
    r_range = list(range(hidden_size))
    z_range = list(range(hidden_size, hidden_size * 2))
    c_range = list(range(hidden_size * 2, hidden_size * 3))

    WGRU[gru_ref.weights_ind_br][:] = gru.b.get()[r_range]
    WGRU[gru_ref.weights_ind_bz][:] = gru.b.get()[z_range]
    WGRU[gru_ref.weights_ind_bc][:] = gru.b.get()[c_range]

    WGRU[gru_ref.weights_ind_Wxr][:] = gru.W_input.get()[r_range]
    WGRU[gru_ref.weights_ind_Wxz][:] = gru.W_input.get()[z_range]
    WGRU[gru_ref.weights_ind_Wxc][:] = gru.W_input.get()[c_range]

    WGRU[gru_ref.weights_ind_Rhr][:] = gru.W_recur.get()[r_range]
    WGRU[gru_ref.weights_ind_Rhz][:] = gru.W_recur.get()[z_range]
    WGRU[gru_ref.weights_ind_Rhc][:] = gru.W_recur.get()[c_range]

    # transpose input X and do fprop
    # the reference code expects these shapes:
    # input_shape: (seq_len, input_size, batch_size)
    # output_shape: (seq_len, hidden_size, batch_size)
    inp_ref = inp.copy().T.reshape(seq_len, batch_size,
                                   input_size).swapaxes(1, 2)
    deltas_ref = deltas.copy().T.reshape(seq_len, batch_size,
                                         hidden_size).swapaxes(1, 2)

    if add_init_state:
        init_state_ref = init_state.copy()
        (dWGRU_ref, h_ref_list, dh_ref_list, dr_ref_list, dz_ref_list,
         dc_ref_list) = gru_ref.lossFun(inp_ref, deltas_ref, init_state_ref)
    else:
        (dWGRU_ref, h_ref_list, dh_ref_list, dr_ref_list, dz_ref_list,
         dc_ref_list) = gru_ref.lossFun(inp_ref, deltas_ref)

    neon_logger.display('====Verifying hidden states====')
    assert allclose_with_out(gru.outputs.get(),
                             h_ref_list,
                             rtol=0.0,
                             atol=1.0e-5)

    neon_logger.display('fprop is verified')

    # now test the bprop
    neon_logger.display('Making sure neon GRU matches numpy GRU in bprop')
    gru.bprop(gru.be.array(deltas))
    # grab the delta W from gradient buffer
    dWinput_neon = gru.dW_input.get()
    dWrecur_neon = gru.dW_recur.get()
    db_neon = gru.db.get()
    dWxr_neon = dWinput_neon[r_range]
    dWxz_neon = dWinput_neon[z_range]
    dWxc_neon = dWinput_neon[c_range]
    dWrr_neon = dWrecur_neon[r_range]
    dWrz_neon = dWrecur_neon[z_range]
    dWrc_neon = dWrecur_neon[c_range]
    dbr_neon = db_neon[r_range]
    dbz_neon = db_neon[z_range]
    dbc_neon = db_neon[c_range]

    drzc_neon = gru.rzhcan_delta_buffer.get()
    dr_neon = drzc_neon[r_range]
    dz_neon = drzc_neon[z_range]
    dc_neon = drzc_neon[c_range]

    dWxr_ref = dWGRU_ref[gru_ref.dW_ind_Wxr]
    dWxz_ref = dWGRU_ref[gru_ref.dW_ind_Wxz]
    dWxc_ref = dWGRU_ref[gru_ref.dW_ind_Wxc]
    dWrr_ref = dWGRU_ref[gru_ref.dW_ind_Rhr]
    dWrz_ref = dWGRU_ref[gru_ref.dW_ind_Rhz]
    dWrc_ref = dWGRU_ref[gru_ref.dW_ind_Rhc]
    dbr_ref = dWGRU_ref[gru_ref.dW_ind_br]
    dbz_ref = dWGRU_ref[gru_ref.dW_ind_bz]
    dbc_ref = dWGRU_ref[gru_ref.dW_ind_bc]

    # neon_logger.display '====Verifying hidden deltas ===='
    neon_logger.display('====Verifying r deltas ====')
    assert allclose_with_out(dr_neon, dr_ref_list, rtol=0.0, atol=1.0e-5)

    neon_logger.display('====Verifying z deltas ====')
    assert allclose_with_out(dz_neon, dz_ref_list, rtol=0.0, atol=1.0e-5)

    neon_logger.display('====Verifying hcan deltas ====')
    assert allclose_with_out(dc_neon, dc_ref_list, rtol=0.0, atol=1.0e-5)

    neon_logger.display('====Verifying update on W_input====')
    neon_logger.display('dWxr')
    assert allclose_with_out(dWxr_neon, dWxr_ref, rtol=0.0, atol=1.0e-5)
    neon_logger.display('dWxz')
    assert allclose_with_out(dWxz_neon, dWxz_ref, rtol=0.0, atol=1.0e-5)
    neon_logger.display('dWxc')
    assert allclose_with_out(dWxc_neon, dWxc_ref, rtol=0.0, atol=1.0e-5)

    neon_logger.display('====Verifying update on W_recur====')

    neon_logger.display('dWrr')
    assert allclose_with_out(dWrr_neon, dWrr_ref, rtol=0.0, atol=1.0e-5)
    neon_logger.display('dWrz')
    assert allclose_with_out(dWrz_neon, dWrz_ref, rtol=0.0, atol=1.0e-5)
    neon_logger.display('dWrc')
    assert allclose_with_out(dWrc_neon, dWrc_ref, rtol=0.0, atol=1.0e-5)

    neon_logger.display('====Verifying update on bias====')
    neon_logger.display('dbr')
    assert allclose_with_out(dbr_neon, dbr_ref, rtol=0.0, atol=1.0e-5)
    neon_logger.display('dbz')
    assert allclose_with_out(dbz_neon, dbz_ref, rtol=0.0, atol=1.0e-5)
    neon_logger.display('dbc')
    assert allclose_with_out(dbc_neon, dbc_ref, rtol=0.0, atol=1.0e-5)

    neon_logger.display('bprop is verified')

    return