def test_concat_l1_l1(backend_default, allrand_args): # test two linear layers that are merged with concat dtypeu = np.float32 w_rng, rngmax = allrand_args # Diff size inputs and outputs nins = [128, 1024] nouts = [64, 2048] batch_size = 16 NervanaObject.be.bsz = batch_size be = NervanaObject.be init_unif = Uniform(low=w_rng[0], high=w_rng[1]) layers = [Sequential(Affine(nout=nout, init=init_unif)) for nout in nouts] inputs = [be.array(dtypeu(np.random.random((nin, batch_size)))) for nin in nins] merge = MergeMultistream(layers, merge="stack") assert(len(inputs) == len(layers)) merge.configure(inputs) merge.allocate() merge.set_deltas(None) out = merge.fprop(inputs).get() sublayers = [s.layers[0] for s in layers] weights = [layer.W.get() for layer in sublayers] out_exp = np.concatenate([np.dot(w, inp.get()) for (w, inp) in zip(weights, inputs)]) assert np.allclose(out, out_exp, atol=1e-3) err_lst = [dtypeu(np.random.random((nout, batch_size))) for nout in nouts] err_concat = np.concatenate(err_lst) merge.bprop(be.array(err_concat)) dW_exp_lst = [np.dot(err, inp.get().T) for (err, inp) in zip(err_lst, inputs)] for layer, dW_exp in zip(sublayers, dW_exp_lst): assert np.allclose(layer.dW.get(), dW_exp) return
def __init__(self): self.in_shape = [1024, (2538, 38)] init = Constant(0) image_path = Sequential( [Affine(20, init, bias=init), Affine(10, init, bias=init)]) sent_path = Sequential([Affine(30, init, bias=init), Affine(10, init)]) layers = [ MergeMultistream(layers=[image_path, sent_path], merge="recurrent"), Dropout(keep=0.5), LSTM(4, init, activation=Logistic(), gate_activation=Tanh(), reset_cells=True), Affine(20, init, bias=init, activation=Softmax()) ] self.layers = layers self.cost = GeneralizedCostMask(CrossEntropyMulti()) self.model = Model(layers=layers) self.model.initialize(self.in_shape, cost=self.cost)
def create_model(vocab_size, rlayer_type): """ Create LSTM/GRU model for bAbI dataset. Args: vocab_size (int) : String of bAbI data. rlayer_type (string) : Type of recurrent layer to use (gru or lstm). Returns: Model : Model of the created network """ # recurrent layer parameters (default gru) rlayer_obj = GRU if rlayer_type == 'gru' else LSTM rlayer_params = dict(output_size=100, reset_cells=True, init=GlorotUniform(), init_inner=Orthonormal(0.5), activation=Tanh(), gate_activation=Logistic()) # if using lstm, swap the activation functions if rlayer_type == 'lstm': rlayer_params.update(dict(activation=Logistic(), gate_activation=Tanh())) # lookup layer parameters lookup_params = dict(vocab_size=vocab_size, embedding_dim=50, init=Uniform(-0.05, 0.05)) # Model construction story_path = [LookupTable(**lookup_params), rlayer_obj(**rlayer_params)] query_path = [LookupTable(**lookup_params), rlayer_obj(**rlayer_params)] layers = [MergeMultistream(layers=[story_path, query_path], merge="stack"), Affine(vocab_size, init=GlorotUniform(), activation=Softmax())] return Model(layers=layers)
def input_layers(self, analytics_input, init, activation, gate): """ return the input layers. we currently support convolutional and LSTM :return: """ if self.recurrent: if analytics_input: # support analytics + content input_layers = MergeMultistream([[ LSTM(300, init, init_inner=Kaiming(), activation=activation, gate_activation=gate, reset_cells=True), RecurrentSum() ], [Affine(30, init, activation=activation)]], 'stack') else: # content only input_layers = [ LSTM(300, init, init_inner=Kaiming(), activation=activation, gate_activation=gate, reset_cells=True), RecurrentSum() ] else: if analytics_input: # support analytics + content input_layers = MergeMultistream([ self.conv_net(activation), [Affine(30, init, activation=Logistic())] ], 'stack') else: # content only input_layers = self.conv_net(activation) return input_layers
def test_concat_sequence_l1_l1(backend_default, allrand_args): # test two linear layers that are merged with concat dtypeu = np.float32 w_rng, rngmax = allrand_args # Diff size input steps nin = 128 steps = [32, 64] nout = 256 batch_size = 16 NervanaObject.be.bsz = NervanaObject.be.bs = batch_size be = NervanaObject.be init_unif = Uniform(low=w_rng[0], high=w_rng[1]) layers = [Sequential(Affine(nout=nout, init=init_unif)) for _ in range(2)] inputs = [be.array(dtypeu(np.random.random((nin, batch_size*step)))) for step in steps] merge = MergeMultistream(layers, merge="recurrent") assert(len(inputs) == len(layers)) merge.configure(inputs) merge.allocate() merge.set_deltas(None) out = merge.fprop(inputs).asnumpyarray() sublayers = [s.layers[0] for s in layers] weights = [layer.W.asnumpyarray() for layer in sublayers] out_exp = np.concatenate([np.dot(w, inp.get()) for (w, inp) in zip(weights, inputs)], axis=1) assert np.allclose(out, out_exp, atol=1e-3) err_lst = [dtypeu(np.random.random((nout, batch_size*step))) for step in steps] err_concat = be.array(np.concatenate(err_lst, axis=1)) merge.bprop(err_concat) dW_exp_lst = [np.dot(err, inp.asnumpyarray().T) for (err, inp) in zip(err_lst, inputs)] for layer, dW_exp in zip(sublayers, dW_exp_lst): assert np.allclose(layer.dW.asnumpyarray(), dW_exp) return
# hyperparameters num_epochs = args.epochs (X_train, y_train), (X_test, y_test), nclass = load_mnist(path=args.data_dir) train_set = ArrayIterator([X_train, X_train], y_train, nclass=nclass, lshape=(1, 28, 28)) valid_set = ArrayIterator([X_test, X_test], y_test, nclass=nclass, lshape=(1, 28, 28)) # weight initialization init_norm = Gaussian(loc=0.0, scale=0.01) # initialize model path1 = Sequential(layers=[Affine(nout=100, init=init_norm, activation=Rectlin()), Affine(nout=100, init=init_norm, activation=Rectlin())]) path2 = Sequential(layers=[Affine(nout=100, init=init_norm, activation=Rectlin()), Affine(nout=100, init=init_norm, activation=Rectlin())]) layers = [MergeMultistream(layers=[path1, path2], merge="stack"), Affine(nout=10, init=init_norm, activation=Logistic(shortcut=True))] model = Model(layers=layers) cost = GeneralizedCost(costfunc=CrossEntropyBinary()) # fit and validate optimizer = GradientDescentMomentum(learning_rate=0.1, momentum_coef=0.9) # configure callbacks callbacks = Callbacks(model, eval_set=valid_set, **args.callback_args) model.fit(train_set, cost=cost, optimizer=optimizer, num_epochs=num_epochs, callbacks=callbacks)
# download dataset data_path = load_flickr8k(path=args.data_dir) # Other setnames are flickr30k and coco # load data train_set = ImageCaption(path=data_path, max_images=-1) # weight initialization init = Uniform(low=-0.08, high=0.08) init2 = Constant(val=train_set.be.array(train_set.bias_init)) # model initialization image_path = Sequential([Affine(hidden_size, init, bias=Constant(val=0.0))]) sent_path = Sequential([Affine(hidden_size, init, linear_name='sent')]) layers = [ MergeMultistream(layers=[image_path, sent_path], merge="recurrent"), Dropout(keep=0.5), LSTM(hidden_size, init, activation=Logistic(), gate_activation=Tanh(), reset_cells=True), Affine(train_set.vocab_size, init, bias=init2, activation=Softmax()) ] cost = GeneralizedCostMask(costfunc=CrossEntropyMulti(usebits=True)) # configure callbacks checkpoint_model_path = "~/image_caption2.pickle" if args.callback_args['save_path'] is None: args.callback_args['save_path'] = checkpoint_model_path if args.callback_args['serialize'] is None: args.callback_args['serialize'] = 1
def test_concat_sequence_l1_l1(backend_default, allrand_args): # test two linear layers that are merged with concat dtypeu = np.float32 w_rng, rngmax = allrand_args # Diff size input steps nin = 128 steps = [32, 64] nout = 256 batch_size = 16 NervanaObject.be.bsz = batch_size be = NervanaObject.be init_unif = Uniform(low=w_rng[0], high=w_rng[1]) layers = [Sequential(Affine(nout=nout, init=init_unif)) for _ in (0, 1)] inputs = [be.array(dtypeu(np.random.random((nin, batch_size * step)))) for step in steps] merge = MergeMultistream(layers, merge="recurrent") assert(len(inputs) == len(layers)) merge.configure(inputs) merge.allocate() merge.set_deltas(None) out = merge.fprop(inputs).get() sublayers = [s.layers[0] for s in layers] weights = [layer.W.get() for layer in sublayers] out_exp = np.concatenate([np.dot(w, inp.get()) for (w, inp) in zip(weights, inputs)], axis=1) assert np.allclose(out, out_exp, atol=1e-3) err_lst = [dtypeu(np.random.random((nout, batch_size * step))) for step in steps] err_concat = be.array(np.concatenate(err_lst, axis=1)) merge.bprop(err_concat) dW_exp_lst = [np.dot(err, inp.get().T) for (err, inp) in zip(err_lst, inputs)] for layer, dW_exp in zip(sublayers, dW_exp_lst): assert np.allclose(layer.dW.get(), dW_exp) return
def test_model_serialize(backend_default, data): (X_train, y_train), (X_test, y_test), nclass = load_mnist(path=data) train_set = ArrayIterator([X_train, X_train], y_train, nclass=nclass, lshape=(1, 28, 28)) init_norm = Gaussian(loc=0.0, scale=0.01) # initialize model path1 = Sequential([ Conv((5, 5, 16), init=init_norm, bias=Constant(0), activation=Rectlin()), Pooling(2), Affine(nout=20, init=init_norm, bias=init_norm, activation=Rectlin()) ]) path2 = Sequential([ Affine(nout=100, init=init_norm, bias=Constant(0), activation=Rectlin()), Dropout(keep=0.5), Affine(nout=20, init=init_norm, bias=init_norm, activation=Rectlin()) ]) layers = [ MergeMultistream(layers=[path1, path2], merge="stack"), Affine(nout=20, init=init_norm, batch_norm=True, activation=Rectlin()), Affine(nout=10, init=init_norm, activation=Logistic(shortcut=True)) ] tmp_save = 'test_model_serialize_tmp_save.pickle' mlp = Model(layers=layers) mlp.optimizer = GradientDescentMomentum(learning_rate=0.1, momentum_coef=0.9) mlp.cost = GeneralizedCost(costfunc=CrossEntropyBinary()) mlp.initialize(train_set, cost=mlp.cost) n_test = 3 num_epochs = 3 # Train model for num_epochs and n_test batches for epoch in range(num_epochs): for i, (x, t) in enumerate(train_set): x = mlp.fprop(x) delta = mlp.cost.get_errors(x, t) mlp.bprop(delta) mlp.optimizer.optimize(mlp.layers_to_optimize, epoch=epoch) if i > n_test: break # Get expected outputs of n_test batches and states of all layers outputs_exp = [] pdicts_exp = [l.get_params_serialize() for l in mlp.layers_to_optimize] for i, (x, t) in enumerate(train_set): outputs_exp.append(mlp.fprop(x, inference=True)) if i > n_test: break # Serialize model mlp.save_params(tmp_save, keep_states=True) # Load model mlp = Model(tmp_save) mlp.initialize(train_set) outputs = [] pdicts = [l.get_params_serialize() for l in mlp.layers_to_optimize] for i, (x, t) in enumerate(train_set): outputs.append(mlp.fprop(x, inference=True)) if i > n_test: break # Check outputs, states, and params are the same for output, output_exp in zip(outputs, outputs_exp): assert np.allclose(output.get(), output_exp.get()) for pd, pd_exp in zip(pdicts, pdicts_exp): for s, s_e in zip(pd['states'], pd_exp['states']): if isinstance(s, list): # this is the batch norm case for _s, _s_e in zip(s, s_e): assert np.allclose(_s, _s_e) else: assert np.allclose(s, s_e) for p, p_e in zip(pd['params'], pd_exp['params']): assert type(p) == type(p_e) if isinstance(p, list): # this is the batch norm case for _p, _p_e in zip(p, p_e): assert np.allclose(_p, _p_e) elif isinstance(p, np.ndarray): assert np.allclose(p, p_e) else: assert p == p_e os.remove(tmp_save)
# if using lstm, swap the activation functions if args.rlayer_type == 'lstm': rlayer_params.update(dict(activation=Logistic(), gate_activation=Tanh())) # lookup layer parameters lookup_params = dict(vocab_size=babi.vocab_size, embedding_dim=50, init=Uniform(-0.05, 0.05)) # Model construction story_path = [LookupTable(**lookup_params), rlayer_obj(**rlayer_params)] query_path = [LookupTable(**lookup_params), rlayer_obj(**rlayer_params)] layers = [ MergeMultistream(layers=[story_path, query_path], merge="stack"), Affine(babi.vocab_size, init=GlorotUniform(), activation=Softmax()) ] model = Model(layers=layers) # setup callbacks callbacks = Callbacks(model, train_set, eval_set=valid_set, **args.callback_args) # train model model.fit(train_set, optimizer=Adam(), num_epochs=args.epochs,
def test_concat_l1_l1(backend_default, allrand_args, deltas_buffer): # test two linear layers that are merged with concat dtypeu = np.float32 w_rng, rngmax = allrand_args # Diff size inputs and outputs nins = [128, 1024] nouts = [64, 2048] batch_size = 16 NervanaObject.be.bsz = batch_size be = NervanaObject.be init_unif = Uniform(low=w_rng[0], high=w_rng[1]) layers = [Sequential(Affine(nout=nout, init=init_unif)) for nout in nouts] inputs = [be.array(dtypeu(np.random.random((nin, batch_size)))) for nin in nins] merge = MergeMultistream(layers, merge="stack") assert(len(inputs) == len(layers)) merge.configure(inputs) merge.allocate() merge.allocate_deltas(deltas_buffer) deltas_buffer.allocate_buffers() merge.set_deltas(deltas_buffer) out = merge.fprop(inputs).get() sublayers = [s.layers[0] for s in layers] weights = [layer.W.get() for layer in sublayers] out_exp = np.concatenate([np.dot(w, inp.get()) for (w, inp) in zip(weights, inputs)]) assert allclose_with_out(out, out_exp, atol=1e-3) err_lst = [dtypeu(np.random.random((nout, batch_size))) for nout in nouts] err_concat = np.concatenate(err_lst) merge.bprop(be.array(err_concat)) dW_exp_lst = [np.dot(err, inp.get().T) for (err, inp) in zip(err_lst, inputs)] for layer, dW_exp in zip(sublayers, dW_exp_lst): assert allclose_with_out(layer.dW.get(), dW_exp) return
def __init__(self, sentence_length, token_vocab_size, pos_vocab_size=None, char_vocab_size=None, max_char_word_length=20, token_embedding_size=None, pos_embedding_size=None, char_embedding_size=None, num_labels=None, lstm_hidden_size=100, num_lstm_layers=1, use_external_embedding=None, dropout=0.5): init = GlorotUniform() tokens = [] if use_external_embedding is None: tokens.append( LookupTable(vocab_size=token_vocab_size, embedding_dim=token_embedding_size, init=init, pad_idx=0)) else: tokens.append(DataInput()) tokens.append(Reshape((-1, sentence_length))) f_layers = [tokens] # add POS tag input if pos_vocab_size is not None and pos_embedding_size is not None: f_layers.append([ LookupTable(vocab_size=pos_vocab_size, embedding_dim=pos_embedding_size, init=init, pad_idx=0), Reshape((-1, sentence_length)) ]) # add Character RNN input if char_vocab_size is not None and char_embedding_size is not None: char_lut_layer = LookupTable(vocab_size=char_vocab_size, embedding_dim=char_embedding_size, init=init, pad_idx=0) char_nn = [ char_lut_layer, TimeDistBiLSTM(char_embedding_size, init, activation=Logistic(), gate_activation=Tanh(), reset_cells=True, reset_freq=max_char_word_length), TimeDistributedRecurrentLast(timesteps=max_char_word_length), Reshape((-1, sentence_length)) ] f_layers.append(char_nn) layers = [] if len(f_layers) == 1: layers.append(f_layers[0][0]) else: layers.append(MergeMultistream(layers=f_layers, merge="stack")) layers.append(Reshape((-1, sentence_length))) layers += [ DeepBiLSTM(lstm_hidden_size, init, activation=Logistic(), gate_activation=Tanh(), reset_cells=True, depth=num_lstm_layers), Dropout(keep=dropout), Affine(num_labels, init, bias=init, activation=Softmax()) ] self._model = Model(layers=layers)