def logits_latency_tensordict(self, features, mode, params, ignore_latency=False, log_searchableblock_tensor='min'):
        is_training = (mode == tf.estimator.ModeKeys.TRAIN)

        override_params = self._get_override_params_from_FLAGS()
        is_supergraph_training_tensor = nas_utils.build_is_supergraph_training_tensor(
            self.global_step, params['supergraph_train_steps'], is_training)
        override_params['is_supergraph_training_tensor'] = is_supergraph_training_tensor

        logits, latency_val, tensordict_to_write_on_tensorboard = \
            net_builder.build_logits_latency_tensordict(features,
                                                        model_json_path=FLAGS.model_json_path,
                                                        training=is_training,
                                                        override_params=override_params,
                                                        model_dir=FLAGS.model_dir,
                                                        ignore_latency=ignore_latency,
                                                        log_searchableblock_tensor=log_searchableblock_tensor)

        if params['use_bfloat16']:
            with tf.contrib.tpu.bfloat16_scope():
                logits = tf.cast(logits, tf.float32)

        num_params = np.sum([np.prod(v.shape) for v in tf.trainable_variables()])
        tf.logging.info('number of trainable parameters: {}'.format(num_params))
        neptune.log_text("#Params",str(num_params ))

        return logits, latency_val, tensordict_to_write_on_tensorboard
Exemple #2
0
    def log_final(self):
        for elem in self.elems:
            neptune.log_text("unfiltered_smis", elem.smi)

        if self.record_filtered:
            for elem in self.filtered_elems:
                neptune.log_text("filtered_smis", elem.smi)
Exemple #3
0
def main(arguments):
    with open(arguments.filepath, 'r') as fp:
        json_exp = json.load(fp)

    neptune.init(api_token=arguments.api_token,
                 project_qualified_name=arguments.project_name)

    with neptune.create_experiment(
            name=json_exp['name'],
            description=json_exp['description'],
            params=json_exp['params'],
            properties=json_exp['properties'],
            tags=json_exp['tags'],
            upload_source_files=json_exp['upload_source_files']):

        for name, channel_xy in json_exp['log_metric'].items():
            for x, y in zip(channel_xy['x'], channel_xy['y']):
                neptune.log_metric(name, x=x, y=y)

        for name, channel_xy in json_exp['log_text'].items():
            for x, y in zip(channel_xy['x'], channel_xy['y']):
                neptune.log_text(name, x=x, y=y)

        for name, channel_xy in json_exp['log_image'].items():
            for x, y in zip(channel_xy['x'], channel_xy['y']):
                neptune.log_image(name, x=x, y=y)

        for filename in json_exp['log_artifact']:
            neptune.log_artifact(filename)
Exemple #4
0
def train_evaluate(search_params):

    hyperparameters = {}
    pick_kwargs = {}
    for k in list(search_params.keys()):
        if k in ['w_dfh', 'w_sharpe', 'w_100d', 'v_100d', 'v_dfh', 'v_rfl']:
            pick_kwargs[k] = search_params[k]
        else:
            hyperparameters[k] = search_params[k]

    hyperparameters['pick_kwargs'] = pick_kwargs
    print('------------')
    print(json.dumps(hyperparameters, indent=2, sort_keys=True))

    sim = Sim(neptune=neptune,
              period='2y',
              timedelay=100,
              window=100,
              timestep=1,
              budget=5000,
              stockPicks=5,
              avoidDowntrends=True,
              sellAllOnCrash=False,
              **hyperparameters)
    stats = sim.run()

    analysis = Analysis(neptune=neptune,
                        stats=stats,
                        positions=sim.portfolio.holdings,
                        prices=sim.downloader.prices)
    #analysis.chart()
    output, advanced_stats, obj_stats = analysis.positionStats()

    for k in list(obj_stats.keys()):
        neptune.log_metric(k, obj_stats[k])

    print(output)

    #neptune.log_artifact('data/output_1y.pkl')
    sharpe = analysis.sharpe()
    stats = sim.portfolio.summary()

    if math.isnan(sharpe) or math.isinf(sharpe) or sharpe <= -2 or sharpe >= 5:
        sharpe = -5

    #neptune.log_metric('sharpe', sharpe)
    #neptune.log_metric('start_value', 5000)
    #neptune.log_metric('end_value', stats['total_value'])

    report = {
        'hyperparameters': hyperparameters,
        'sharpe': sharpe,
        'end_value': stats['total_value'],
        'gains': (stats['total_value'] - 5000.0) / 5000.0
    }

    neptune.log_text('report', json.dumps(report, indent=2, sort_keys=True))

    return sharpe
Exemple #5
0
    def train_and_eval(self):
        assert FLAGS.mode == 'train_and_eval'

        current_step = estimator._load_global_step_from_checkpoint_dir(
            FLAGS.model_dir)

        train_epochs = self.params['train_steps'] / \
            self.params['steps_per_epoch']
        tf.logging.info(
            'Training for %d steps (%.2f epochs in total). Current step %d.',
            self.params['train_steps'], train_epochs, current_step)

        # neptune.log_text('Train INFO', f"Training for {self.params['train_steps']} steps {train_epochs} epochs in total)\n Current step {current_step}")

        start_timestamp = time.time(
        )  # This time will include compilation time

        eval_results = None
        while current_step < self.params['train_steps']:
            # Train for up to steps_per_eval number of steps.
            # At the end of training, a checkpoint will be written to --model_dir.
            steps_per_eval = int(FLAGS.epochs_per_eval *
                                 self.params['steps_per_epoch'])
            next_eval = (current_step // steps_per_eval) * \
                steps_per_eval + steps_per_eval
            print("next eval point : ", next_eval)
            next_checkpoint = min(next_eval, self.params['train_steps'])
            self.est.train(input_fn=self.imagenet_train.input_fn,
                           max_steps=int(next_checkpoint))
            current_step = next_checkpoint

            tf.logging.info(
                'Finished training up to step %d. Elapsed seconds %d.',
                next_checkpoint, int(time.time() - start_timestamp))
            neptune.log_text(
                'train INFO',
                'Finished training up to step {}. Elapsed seconds {}'.format(
                    next_checkpoint, int(time.time() - start_timestamp)))

            eval_results = self.eval()

        if eval_results is None:
            eval_results = self.eval()

        elapsed_time = int(time.time() - start_timestamp)
        tf.logging.info('Finished training up to step %d. Elapsed seconds %d.',
                        self.params['train_steps'], elapsed_time)
        neptune.log_text(
            'train INFO',
            'Finished training up to step {} . Elapsed seconds {}'.format(
                self.params["train_steps"], elapsed_time))

        tf.keras.backend.clear_session()
        tf.reset_default_graph()

        return eval_results['top_1_accuracy'].item()
    def build_models(self, build_encoder, build_decoder):
        self.encoder, volume_size = build_encoder(z_size=self.z_dim,
                                                  img_size=self.img_size)
        self.decoder = build_decoder(z_size=self.z_dim,
                                     volume_size=volume_size)

        # log model summary
        self.encoder.summary(
            print_fn=lambda x: neptune.log_text('encoder_summary', x))
        self.decoder.summary(
            print_fn=lambda x: neptune.log_text('decoder_summary', x))
 def log_dict(self, dict_name, input_dict, task_name="", recursion_level=0):
     if self.logger_active:
         # Add spaces so that dict prints prettily in logger
         spacing_str = '|' + ' - - - ' * recursion_level
         for key, value in input_dict.items():
             if type(value) == dict:
                 neptune.log_text(f"{task_name} {dict_name}",
                                  f"{spacing_str}{str(key)}")
                 self.log_dict(dict_name, value, task_name,
                               recursion_level + 1)
             else:
                 neptune.log_text(f"{task_name} {dict_name}",
                                  f"{spacing_str}{str(key)}: {str(value)}")
     else:
         print(f"{task_name} {dict_name}: {str(input_dict)}")
Exemple #8
0
    def initialize(self, pauli_strings: Set[cirq.PauliString] = None):
        self.initialized = True
        expectations, pauli_strings = self.precomputed_expectations_provider.get_expectations_for_random_batch(
            pauli_strings,
            filter_small_expectations=self.filter_small_expectations)
        self.used_pauli_strings = pauli_strings
        self.input_dim = len(self.used_pauli_strings)
        if self.use_convolutions:
            conv_size = 108
            real_size = len(pauli_strings)
            extra_dims = conv_size - real_size
            for exps in expectations:
                for _ in range(extra_dims):
                    exps.append(0)
            self.input_dim = conv_size

        self.discriminator = self._discriminator()
        self.generator = self._generator()
        dataset = tf.data.Dataset.from_tensor_slices(
            (np.array(expectations, dtype='float32') + 1) / 2)
        # dataset = tf.data.Dataset.from_tensor_slices(np.array(expectations, dtype='float32'))
        dataset = dataset.shuffle(buffer_size=len(self.precomputed_expectations_provider.real_state_parameters)) \
            .batch(self.batch_size)
        start = time.time()
        for epoch in range(self.epochs):
            epoch_gen_losses = []
            epoch_disc_losses = []
            for batch in dataset:
                gen_loss, disc_loss, pen_loss = self.train_step(batch)

                epoch_gen_losses.append(gen_loss)
                epoch_disc_losses.append(disc_loss)
            average_epoch_gen_loss = st.mean(epoch_gen_losses)
            average_epoch_disc_loss = st.mean(epoch_disc_losses)
            if self.use_neptune:
                neptune.log_metric("wgan_gen_loss", average_epoch_gen_loss)
                neptune.log_metric("wgan_disc_loss", average_epoch_disc_loss)
                neptune.log_metric("wgan_pen_loss", average_epoch_disc_loss)
                neptune.log_text("wgan_seed", str(self.seed))
            if epoch % self.report_interval_epochs == 0:
                print(
                    f"Epoch: {epoch}, time for last {self.report_interval_epochs} epochs {time.time() - start}"
                )
                print(
                    f"Last epoch gen loss: {average_epoch_gen_loss}, disc loss: {average_epoch_disc_loss}"
                )
                start = time.time()
Exemple #9
0
def save_roc(data_loader, epoch, net_g, net_d, len_train_dataset, test=False):
    _, _, pred_real, pred_fake, names = get_gan_metric(data_loader, net_g,
                                                       net_d)
    true = np.concatenate((np.ones(
        (len(pred_real), 1)), np.zeros((len(pred_fake), 1))),
                          axis=0)
    pred = np.concatenate((pred_real, pred_fake), axis=0)
    auc_total = roc_auc_score(true, pred)
    name_metric = 'val_' if test else ''
    neptune.log_metric(name_metric + 'auc_total',
                       (epoch - 1) * len_train_dataset, auc_total)

    size = int(len(pred_real) / len(data_loader))
    assert true.shape[0] == pred.shape[0]
    for i in range(len(data_loader)):
        sample = np.concatenate([
            pred_real[i * size:(i + 1) * size],
            pred_fake[i * size:(i + 1) * size]
        ])
        true = np.concatenate([np.ones((size, )), np.zeros((size, ))])
        tmp = f'{epoch}\t{names[i]}:\n{roc_auc_score(true, sample)}'
        neptune.log_text(name_metric + 'auc_sample', tmp)
Exemple #10
0
    def train(self):
        data_loader = DataLoader(
            self.dataset, batch_size=self.batch_size, shuffle=True, num_workers=0, collate_fn=synthetic_route_collate_fn
        )
        for step in tqdm(range(self.num_steps)):
            try:
                graph, node2smi, node2molgraph, prop_traj = next(data_iter)
            except:
                data_iter = iter(data_loader)
                graph, node2smi, node2molgraph, prop_traj = next(data_iter)

            loss = self.train_batch(graph, node2molgraph, prop_traj)
            if not self.disable_neptune:
                neptune.log_metric("loss", loss.item())

            if (step + 1) % self.eval_freq == 0:
                self.model.eval()
                with torch.no_grad():
                    graphs, node2smis, node2molgraphs = self.generator.generate(num_samples=self.num_eval_samples)

                self.model.train()
                if not self.disable_neptune:
                    for graph, node2smi in zip(graphs, node2smis):
                        edges = [
                            (u, v)
                            for u, v in zip(
                                graph.edges(etype=PARENT_EDGE_TYPE)[0].tolist(),
                                graph.edges(etype=PARENT_EDGE_TYPE)[1].tolist(),
                            )
                        ]
                        neptune.log_text("edges", str(edges))
                        neptune.log_text("node2smi", str(node2smi))

            if (step + 1) % self.checkpoint_freq == 0:
                state_dict = self.model.state_dict()
                with open(self.checkpoint_path, "wb") as f:
                    torch.save(state_dict, f)
Exemple #11
0
def main(argv):
    gin.parse_config_files_and_bindings(FLAGS.gin_file, FLAGS.gin_param, skip_unknown=True)
    print("Gin parameter bindings:\n{}".format(gin.config_str()))

    use_neptune = "NEPTUNE_API_TOKEN" in os.environ
    exp_id = ''

    if use_neptune:
        neptune.init(project_qualified_name='bbeatrix/curl')
        exp = neptune.create_experiment(params=gin_config_to_dict(gin.config_str()),
                                        name=FLAGS.gin_file[0].split('/')[-1][:-4],
                                        upload_source_files=['./*.py'])
        exp_id = exp.id
    else:
        neptune.init('shared/onboarding', 'ANONYMOUS', backend=neptune.OfflineBackend())

    neptune.log_text('gin_config', gin.config_str())
    neptune.log_artifact(*FLAGS.gin_file, 'gin_config_{}.gin'.format(exp_id))

    exp_manager = ExperimentManager(prefix=exp_id)
    exp_manager.run_experiment()

    neptune.stop()
    print("Fin")
def evaluate_single():

    path = r'datasets/classification'
    names = os.listdir(path)
    names = sorted(names)
    datasets = [{"name":x,"target_column":"class"} for x in names]

    for dataset in tqdm.tqdm(datasets[1:]):
        try:
          neptune.create_experiment(name = dataset['name'])
          print('Training ' + dataset['name'])
          data = pd.read_csv(path + '/' + dataset["name"])
          change_df_column(data, dataset['target_column'], 'class')
          X, y = data.drop(columns=['class']), data['class']
          X,y = preproces_data(X,y)
          X_train, X_test, y_train, y_test = train_test_split(X, y, stratify = y, random_state=42, test_size=0.3)
        #   print('cat')
        #   get_cat_score(X_train, y_train, X_test, y_test)
        #   print('lgbm')
        #   get_lgbm_score(X_train,y_train,X_test,y_test)
        #   print('xgb')
        #   get_xgb_score(X_train, y_train, X_test, y_test)
          print('grid')
          get_grid_score(X_train, y_train, X_test, y_test)
        #   print('bayes-cv')
        #   get_bayes_scikit_score_cv(X_train, y_train, X_test, y_test, folds = 5, max_evals = 30)
        #   print('bayes-10')
        #   get_bayes_scikit_score(X_train, y_train, X_test, y_test, X_val, y_val, max_evals = 10)
        #   print('bayes-15')
        #   get_bayes_scikit_score(X_train, y_train, X_test, y_test, X_val, y_val, max_evals = 15)
        #   print('bayes-25')
        #   get_bayes_scikit_score(X_train, y_train, X_test, y_test, X_val, y_val, max_evals = 25)
         
        except Exception as ex:
          print(ex)
          neptune.log_text('failed', 'yes')
Exemple #13
0
def get_model_args_and_gparams(model_json_path, override_params):
    """
    Gets model_args from json file.
    Supports both tensorflow-style stages_args and more human-readable style.
    """
    model_json = json.load(tf_open_file_in_path(
        "", model_json_path, "r"), object_pairs_hook=AttrDict)
    model_args = AttrDict(model_json)

    decoder = BlockArgsDecoder()
    model_args.stages_args = decoder.decode_to_stages_args(
        model_args.stages_args)

    gparams_dict = parse_gparams_from_model_args(model_args)
    global_params = GlobalParams(**gparams_dict)

    if override_params:
        global_params = global_params._replace(**override_params)

    tf.logging.info('global_params= %s', global_params)
    neptune.log_text("global_params", str(global_params))
    tf.logging.info('stages_args= %s', model_args.stages_args)
    neptune.log_text("stages_args", str(model_args.stages_args))
    return model_args, global_params
Exemple #14
0
    def start_training(self, env, render=False, load=False):
        if not os.path.exists("./dqn/results"):
            os.makedirs("./dqn/results")

        if not os.path.exists("./dqn/models"):
            os.makedirs("./dqn/models")

        file_name = "dqn_result"
        evaluations = []
        neptune.log_text('cpu_count', str(psutil.cpu_count()))
        neptune.log_text('count_non_logical',
                         str(psutil.cpu_count(logical=False)))

        l = []

        tic_training = time.perf_counter()
        for i in range(self.training_episodes):
            neptune.log_text('avg_cpu_load', str(psutil.getloadavg()))
            neptune.log_text('cpu_percent',
                             str(psutil.cpu_percent(interval=1, percpu=True)))
            tic_episode = time.perf_counter()
            if self.multi_processing:
                p = Process(target=self.episode, args=[env, i, render])
                p.start()
                l.append(p)
            else:
                reward = self.episode(env, i, render)
                evaluations.append(reward)
                neptune.log_metric('reward', reward)
            toc_episode = time.perf_counter()
            neptune.log_metric('episode_duration', toc_episode - tic_episode)
        if self.multi_processing:
            [p.join() for p in l]
        toc_training = time.perf_counter()
        neptune.log_metric('training_duration', toc_training - tic_training)
        np.save(f"./dqn/results/{file_name}", evaluations)
Exemple #15
0
    def log_text(self, string, key=None, epoch=None):
        '''
          Logs text strings

          Parameters
          ----------
          string : STR
              text to  log
          key: STR
              log_name needed for Neptune strings 
          epoch: INT
              epoch or any other index
          
          Returns
          -------
          None.

        '''
        if self.neptune:
            if type(string) is str:
                if key is None:
                    print('Neptune log_name needed for logging text')
                    print('Using a dummy name: text')
                    neptune.log_text('text', string)
                if epoch is None:
                    neptune.log_text(key, string)
                else:
                    neptune.log_text(key, epoch, y=string)
            else:
                print("Wrong type: logging text must be a string")
        if self.comet:
            if type(string) is str:
                if key is not None:
                    print(
                        "Commet text logging does not  support keys, prepending it to text"
                    )
                    string = key + ', ' + string
                if epoch is None:
                    self.comet_experiment.log_text(string)
                else:
                    self.comet_experiment.log_text(string, step=epoch)
            else:
                print("Wrong type: logging text must be a string")
Exemple #16
0
    def log_series(self):
        # floats
        neptune.log_metric("m1", 1)
        neptune.log_metric("m1", 2)
        neptune.log_metric("m1", 3)
        neptune.log_metric("m1", 2)
        neptune.log_metric("nested/m1", 1)

        # texts
        neptune.log_text("m2", "a")
        neptune.log_text("m2", "b")
        neptune.log_text("m2", "c")

        # images
        # `image_name` and `description` will be lost
        neptune.log_image("g_img",
                          self.img_path,
                          image_name="name",
                          description="desc")
        neptune.log_image("g_img", self.img_path)

        # see what we've logged
        logs = neptune.get_experiment().get_logs()
        print(f"Logs: {logs}")
Exemple #17
0
import neptune
import numpy as np

# Select project
neptune.init('neptune-workshops/AII-Optimali')

# Define parameters
PARAMS = {'decay_factor': 0.5, 'n_iterations': 117}

# Create experiment
neptune.create_experiment(name='minimal-extended', params=PARAMS)

# Log some metrics
for i in range(1, PARAMS['n_iterations']):
    neptune.log_metric('iteration', i)
    neptune.log_metric('loss', PARAMS['decay_factor'] / i**0.5)
    neptune.log_text('text_info', 'some value {}'.format(0.95 * i**2))

# Add tag to the experiment
neptune.append_tag('quick_start')

# Log some images
for j in range(5):
    array = np.random.rand(10, 10, 3) * 255
    array = np.repeat(array, 30, 0)
    array = np.repeat(array, 30, 1)
    neptune.log_image('mosaics', array)
    if PARAMS['optimizer'] == 'Adam':
        optimizer = tf.keras.optimizers.Adam(
            learning_rate=PARAMS['learning_rate'], )
    elif PARAMS['optimizer'] == 'Nadam':
        optimizer = tf.keras.optimizers.Nadam(
            learning_rate=PARAMS['learning_rate'], )
    elif PARAMS['optimizer'] == 'SGD':
        optimizer = tf.keras.optimizers.SGD(
            learning_rate=PARAMS['learning_rate'], )

    model.compile(optimizer=optimizer,
                  loss='sparse_categorical_crossentropy',
                  metrics=['accuracy'])

    # log model summary
    model.summary(print_fn=lambda x: neptune.log_text('model_summary', x))

    # train model
    model.fit(train_images,
              train_labels,
              batch_size=PARAMS['batch_size'],
              epochs=PARAMS['n_epochs'],
              shuffle=PARAMS['shuffle'],
              callbacks=[
                  keras.callbacks.LambdaCallback(
                      on_epoch_end=lambda epoch, logs: log_data(logs)),
                  keras.callbacks.EarlyStopping(
                      patience=PARAMS['early_stopping'],
                      monitor='accuracy',
                      restore_best_weights=True),
                  keras.callbacks.LearningRateScheduler(lr_scheduler)
Exemple #19
0
def do_main():
    device = torch.device(f'cuda:{gpu_number}') if torch.cuda.is_available(
    ) else torch.device('cpu')
    print(device)

    print(len(train_boxes_df))
    print(len(train_images_df))

    # Leave only > 0
    print('Leave only train images with boxes (all)')
    with_boxes_filter = train_images_df[image_id_column].isin(
        train_boxes_df[image_id_column].unique())

    images_val = train_images_df.loc[(train_images_df[fold_column] == fold)
                                     & with_boxes_filter,
                                     image_id_column].values
    images_train = train_images_df.loc[(train_images_df[fold_column] != fold)
                                       & with_boxes_filter,
                                       image_id_column].values

    print(len(images_train), len(images_val))

    train_dataset = WheatDataset(images_train[:16],
                                 DIR_TRAIN,
                                 train_box_callback,
                                 transforms=get_train_transform(),
                                 is_test=False)
    valid_dataset = WheatDataset(images_val[:16],
                                 DIR_TRAIN,
                                 train_box_callback,
                                 transforms=get_valid_transform(),
                                 is_test=True)

    train_data_loader = DataLoader(train_dataset,
                                   batch_size=train_batch_size,
                                   shuffle=True,
                                   num_workers=num_workers,
                                   collate_fn=collate_fn)

    valid_data_loader = DataLoader(valid_dataset,
                                   batch_size=inf_batch_size,
                                   shuffle=False,
                                   num_workers=num_workers,
                                   collate_fn=collate_fn)

    config = get_efficientdet_config(f'tf_efficientdet_d{model_name[-1]}')
    net = EfficientDet(config, pretrained_backbone=False)
    #load_weights(net, '../timm-efficientdet-pytorch/efficientdet_d4-5b370b7a.pth')
    load_weights(net,
                 '../timm-efficientdet-pytorch/efficientdet_d5-ef44aea8.pth')

    config.num_classes = 1
    config.image_size = our_image_size
    net.class_net = HeadNet(config,
                            num_outputs=config.num_classes,
                            norm_kwargs=dict(eps=.001, momentum=.01))

    fold_weights_file = f'{experiment_name}.pth'
    if os.path.exists(fold_weights_file):
        # continue training
        print('Continue training, loading weights: ' + fold_weights_file)
        load_weights(net, fold_weights_file)

    model = DetBenchTrain(net, config)

    manager = ModelManager(model, device)
    weights_file = f'{experiment_name}.pth'

    manager.run_train(train_data_loader,
                      valid_data_loader,
                      n_epoches=n_epochs,
                      weights_file=weights_file,
                      factor=factor,
                      start_lr=start_lr,
                      min_lr=min_lr,
                      lr_patience=lr_patience,
                      overall_patience=overall_patience,
                      loss_delta=loss_delta)

    # add tags
    neptune.log_text('save checkpoints as', weights_file[:-4])
    neptune.stop()
Exemple #20
0
 def log_text(self, name, text):
     neptune.log_text(name, text)
Exemple #21
0
 def log_status(self, text):
     neptune.log_text('status', text)
def main() -> None:
    device = f"cuda:{gpu_number}" if torch.cuda.is_available() else torch.device('cpu')
    print(device)

    train_boxes_df = pd.read_csv(META_TRAIN)
    train_boxes_df = preprocess_boxes(train_boxes_df)
    train_images_df = pd.read_csv('folds/orig_alex_folds.csv')    
    print(f'\nTotal images: {len(train_images_df.image_id.unique())}')
    
    # Leave only images with bboxes
    image_id_column = 'image_id'
    print('Leave only train images with boxes')
    with_boxes_filter = train_images_df[image_id_column].isin(train_boxes_df[image_id_column].unique())
    
    # train/val images
    images_val = train_images_df.loc[
        (train_images_df['fold'] == fold) & with_boxes_filter, image_id_column].values
    images_train = train_images_df.loc[
        (train_images_df['fold'] != fold) & with_boxes_filter, image_id_column].values     
    print(f'\nTrain images:{len(images_train)}, validation images {len(images_val)}')
    
    # get datasets
    train_dataset = WheatDataset(
                                image_ids = images_train[:16], 
                                image_dir = TRAIN_DIR, 
                                #train_box_callback,
                                labels_df = train_boxes_df,
                                transforms = get_train_transforms(image_size), 
                                is_test = False
                                )
    valid_dataset = WheatDataset(
                                image_ids = images_val[:16], 
                                image_dir = TRAIN_DIR, 
                                labels_df = train_boxes_df,
                                #train_box_callback,
                                transforms=get_valid_transforms(image_size), 
                                is_test=True
                                )
    # get dataloaders
    train_data_loader = DataLoader(
        train_dataset,
        batch_size=batch_size,
        shuffle=True,
        num_workers=num_workers,
        collate_fn=collate_fn
        )

    valid_data_loader = DataLoader(
        valid_dataset,
        batch_size=inf_batch_size,
        shuffle=False,
        num_workers=num_workers,
        collate_fn=collate_fn
        )
        
    # efficientdet config
    config = get_efficientdet_config(f'tf_efficientdet_d{model_name[-1]}')
    config.num_classes = 1
    config.image_size = image_size

    net = EfficientDet(config, pretrained_backbone=False)     
    net.class_net = HeadNet(config, num_outputs=config.num_classes, norm_kwargs=dict(eps=.001, momentum=.01))

    weights_file = f'{experiment_name}.pth'
    # If resume training
    if os.path.exists(weights_file):        
        print(f'Continue training, loading weights from: {weights_file}')
        load_weights(net, weights_file)
    else:
        print(f'Use coco pretrain')
        pretrain = get_effdet_pretrain_names(model_name)
        load_weights(net, '../../timm-efficientdet-pytorch/{pretrain}')
    model = DetBenchTrain(net, config)

    runner = ModelRunner(model, device)
    weights_file = f'{experiment_name}.pth'
    # add tags 
    neptune.log_text('save checkpoints as', weights_file[:-4])

    # run training 
    runner.run_train(train_data_loader, valid_data_loader, n_epoches=n_epochs, weights_file=weights_file,
                      factor=factor, start_lr=start_lr, min_lr=min_lr, lr_patience=lr_patience, overall_patience=overall_patience, loss_delta=loss_delta)
    neptune.stop()
                        name='b1_cnv2d_2',
                        kernel_initializer='normal')(b1_cnv2d_2)
    b1_relu_2 = ReLU(name='b1_relu_2')(b1_cnv2d_2)
    # b1_out = BatchNormalization(epsilon=1e-3, momentum=0.999, name='b1_out')(b1_relu_2)  # size: 64*64

    reconstruction = Conv2D(filters=1,
                            kernel_size=(1, 1),
                            activation='sigmoid',
                            padding='same')(b1_relu_2)
    # </editor-fold>

    decoder = Model(latent_inputs, reconstruction, name='origin_decoder')
    decoder.summary()

    # log model summary
    encoder.summary(print_fn=lambda x: neptune.log_text('encoder_summary', x))
    decoder.summary(print_fn=lambda x: neptune.log_text('decoder_summary', x))

    outputs = decoder(encoder(input_img))
    vae = Model(input_img, outputs, name='vae')

    def get_vae_loss(input, x_decoded_mean, encoded_sigma, encoded_mean):
        xent_loss = tf.reduce_mean(mean_squared_error(input, x_decoded_mean))
        kl_loss = 0.5 * tf.reduce_sum(
            tf.square(encoded_mean) + tf.square(encoded_sigma) -
            tf.math.log(tf.square(encoded_sigma)) - 1, -1)
        return xent_loss + kl_loss

    reconst_loss = mean_squared_error(K.flatten(input_img), K.flatten(outputs))
    reconst_loss *= image_size * image_size
    kl_loss = 0.5 * tf.reduce_sum(
Exemple #24
0
 def log_text(self, name: str, value: str):
     if not self.disabled:
         neptune.log_text(name, value)
            apprentice_storage=apprentice_storage,
            expert_storage=expert_storage,
            apprentice_handler=apprentice_handler,
            expert_handler=expert_handler,
            char_dict=char_dict,
            num_keep=args.num_keep,
            apprentice_sampling_batch_size=args.apprentice_sampling_batch_size,
            expert_sampling_batch_size=args.expert_sampling_batch_size,
            apprentice_training_batch_size=args.apprentice_training_batch_size,
            num_apprentice_training_steps=args.num_apprentice_training_steps,
            init_smis=[reference_smi],
        )

        recorder = Recorder(scoring_num_list=scoring_num_list,
                            record_filtered=args.record_filtered)

        exp_generator = GeneticExpertGuidedLearningGenerator(
            trainer=trainer,
            recorder=recorder,
            num_steps=args.num_steps,
            device=device,
            scoring_num_list=scoring_num_list,
            num_jobs=args.num_jobs,
        )
        result = benchmark.assess_model(exp_generator)

        neptune.log_metric("id", smi_id)
        neptune.log_metric("score", result.optimized_molecules[0][1])
        neptune.log_text("reference_smi", reference_smi)
        neptune.log_text("optimized_smi", result.optimized_molecules[0][0])
def train_pnas(PARAMS):
    ensure_dir_exists(PARAMS['log_dir'])
    ensure_dir_exists(PARAMS['model_dir'])
    neptune.append_tag(PARAMS['dataset_name'])
    neptune.append_tag(PARAMS['model_name'])
    neptune.append_tag(str(PARAMS['target_size']))
    neptune.append_tag(PARAMS['num_channels'])
    neptune.append_tag(PARAMS['color_mode'])
    K.clear_session()
    tf.random.set_seed(34)

    train_dataset, validation_dataset, data_files = create_dataset(
        dataset_name=PARAMS['dataset_name'],
        batch_size=PARAMS['BATCH_SIZE'],
        target_size=PARAMS['target_size'],
        num_channels=PARAMS['num_channels'],
        color_mode=PARAMS['color_mode'],
        splits=PARAMS['splits'],
        augment_train=PARAMS['augment_train'],
        aug_prob=PARAMS['aug_prob'])

    PARAMS['num_classes'] = data_files.num_classes
    PARAMS['splits_size'] = {'train': {}, 'validation': {}}
    PARAMS['splits_size'][
        'train'] = data_files.num_samples * PARAMS['splits']['train']
    PARAMS['splits_size'][
        'validation'] = data_files.num_samples * PARAMS['splits']['validation']

    steps_per_epoch = PARAMS['splits_size']['train'] // PARAMS['BATCH_SIZE']
    validation_steps = PARAMS['splits_size']['validation'] // PARAMS[
        'BATCH_SIZE']

    neptune.set_property('num_classes', PARAMS['num_classes'])
    neptune.set_property('steps_per_epoch', steps_per_epoch)
    neptune.set_property('validation_steps', validation_steps)

    encoder = base_dataset.LabelEncoder(data_files.classes)
    #     train_dataset = train_dataset.map(lambda x,y: apply_preprocess(x,y,PARAMS['num_classes']),num_parallel_calls=-1)
    #     validation_dataset = validation_dataset.map(lambda x,y: apply_preprocess(x,y,PARAMS['num_classes']),num_parallel_calls=-1)

    #     METRICS = ['accuracy']
    callbacks = [
        neptune_logger,
        ImageLoggerCallback(data=train_dataset,
                            freq=10,
                            max_images=-1,
                            name='train',
                            encoder=encoder),
        ImageLoggerCallback(data=validation_dataset,
                            freq=10,
                            max_images=-1,
                            name='val',
                            encoder=encoder),
        EarlyStopping(monitor='val_loss', patience=25, verbose=1)
    ]

    PARAMS['base_learning_rate'] = PARAMS['lr']
    PARAMS['input_shape'] = (*PARAMS['target_size'], PARAMS['num_channels'])
    model = build_model(PARAMS)

    #     if PARAMS['optimizer']=='Adam':
    #         optimizer = tf.keras.optimizers.Adam(learning_rate=PARAMS['lr'])

    #     base = tf.keras.applications.vgg16.VGG16(weights='imagenet',
    #                                              include_top=False,
    #                                              input_tensor=Input(shape=(*PARAMS['target_size'],3)))

    #     model = build_head(base, num_classes=PARAMS['num_classes'])

    #     model.compile(optimizer=optimizer,
    #                   loss=PARAMS['loss'],
    #                   metrics=METRICS)

    model.summary(print_fn=lambda x: neptune.log_text('model_summary', x))
    pprint(PARAMS)
    history = model.fit(train_dataset,
                        epochs=PARAMS['num_epochs'],
                        callbacks=callbacks,
                        validation_data=validation_dataset,
                        shuffle=True,
                        initial_epoch=0,
                        steps_per_epoch=steps_per_epoch,
                        validation_steps=validation_steps)

    for k, v in PARAMS.items():
        neptune.set_property(str(k), str(v))

    return history
def train_imagenette(PARAMS):

    neptune.append_tag(PARAMS['dataset_name'])
    neptune.append_tag(PARAMS['model_name'])

    K.clear_session()
    tf.random.set_seed(34)
    target_size = PARAMS['target_size']
    BATCH_SIZE = PARAMS['BATCH_SIZE']

    train_dataset, validation_dataset, info = create_Imagenette_dataset(
        BATCH_SIZE,
        target_size=target_size,
        augment_train=PARAMS['augment_train'])
    num_classes = info.features['label'].num_classes

    encoder = base_dataset.LabelEncoder(info.features['label'].names)

    train_dataset = train_dataset.map(
        lambda x, y: apply_preprocess(x, y, num_classes),
        num_parallel_calls=-1)
    validation_dataset = validation_dataset.map(
        lambda x, y: apply_preprocess(x, y, num_classes),
        num_parallel_calls=-1)

    PARAMS['num_classes'] = num_classes
    steps_per_epoch = info.splits['train'].num_examples // BATCH_SIZE
    validation_steps = info.splits['validation'].num_examples // BATCH_SIZE

    neptune.set_property('num_classes', num_classes)
    neptune.set_property('steps_per_epoch', steps_per_epoch)
    neptune.set_property('validation_steps', validation_steps)

    optimizer = tf.keras.optimizers.Adam(learning_rate=PARAMS['learning_rate'])
    loss = 'categorical_crossentropy'
    METRICS = ['accuracy']

    base = tf.keras.applications.vgg16.VGG16(
        weights='imagenet',
        include_top=False,
        input_tensor=Input(shape=(*target_size, 3)))

    # TODO try freezing weights for input_shape != (224,224)

    model = build_head(base, num_classes=num_classes)

    model.compile(optimizer=optimizer, loss=loss, metrics=METRICS)

    callbacks = [
        neptune_logger,
        ImageLoggerCallback(data=train_dataset,
                            freq=10,
                            max_images=-1,
                            name='train',
                            encoder=encoder),
        ImageLoggerCallback(data=validation_dataset,
                            freq=10,
                            max_images=-1,
                            name='val',
                            encoder=encoder),
        EarlyStopping(monitor='val_loss', patience=2, verbose=1)
    ]

    model.summary(print_fn=lambda x: neptune.log_text('model_summary', x))
    pprint(PARAMS)
    history = model.fit(train_dataset,
                        epochs=10,
                        callbacks=callbacks,
                        validation_data=validation_dataset,
                        shuffle=True,
                        initial_epoch=0,
                        steps_per_epoch=steps_per_epoch,
                        validation_steps=validation_steps)
Exemple #28
0
    def on_epoch_end(self, epoch, optimizer, val_generator, weights_file,
                     factor, min_lr, lr_patience, overall_patience,
                     loss_delta):
        self.train_model.eval()
        current_loss = 0

        tqdm_generator = tqdm(val_generator, mininterval=15)
        tqdm_generator.set_description('validation loss')

        with torch.no_grad():
            for batch_idx, (batch_imgs, batch_labels,
                            image_id) in enumerate(tqdm_generator):
                batch_imgs = torch.stack(batch_imgs)
                batch_imgs = batch_imgs.to(self.device).float()
                batch_boxes = [
                    target['boxes'].to(self.device) for target in batch_labels
                ]
                batch_labels = [
                    target['labels'].to(self.device) for target in batch_labels
                ]
                loss, _, _ = self.train_model(batch_imgs, batch_boxes,
                                              batch_labels)

                loss_value = loss.item()
                # just slide average
                current_loss = (current_loss * batch_idx +
                                loss_value) / (batch_idx + 1)

        # validate loss
        print('\nValidation loss: ', current_loss)
        neptune.log_metric('Validation loss', current_loss)

        # validate metric
        nms_thr = 0.4
        true_list, pred_boxes, pred_scores = self.predict(val_generator)
        current_metric = competition_metric(true_list, pred_boxes, pred_scores,
                                            nms_thr)
        print('\nValidation mAP', current_metric)
        neptune.log_metric('Validation mAP', current_metric)
        neptune.log_text('nms_threshold', str(nms_thr))

        if current_loss < self.best_loss - loss_delta:
            print(
                f'\nLoss has been improved from {self.best_loss} to {current_loss}'
            )
            self.best_loss = current_loss
            self.best_epoch = epoch
            torch.save(self.train_model.model.state_dict(), f'{weights_file}')
        else:
            print(f'\nLoss has not been improved from {self.best_loss}')

        if current_metric > self.best_metric:
            print(
                f'\nmAP has been improved from {self.best_metric} to {current_metric}'
            )
            self.best_metric = current_metric
            self.best_epoch = epoch
            torch.save(self.train_model.model.state_dict(),
                       f'{weights_file}_best_map')

        if epoch - self.best_epoch > overall_patience:
            print('\nEarly stop: training finished with patience!')
            return False

        print('curr_lr_loss', self.curr_lr_loss)
        if current_loss >= self.curr_lr_loss - loss_delta:
            print('curr_lr_loss not improved')
            old_lr = float(get_lr(optimizer))
            print('old_lr', old_lr)
            if old_lr > min_lr and epoch - self.best_lr_epoch > lr_patience:
                new_lr = old_lr * factor
                new_lr = max(new_lr, min_lr)
                print('new_lr', new_lr)
                set_lr(optimizer, new_lr)
                self.curr_lr_loss = 100
                self.best_lr_epoch = epoch
                print(
                    '\nEpoch %05d: ReduceLROnPlateau reducing learning rate to %s.'
                    % (epoch, new_lr))
        else:
            print('curr_lr_loss improved')
            self.curr_lr_loss = current_loss
            self.best_lr_epoch = epoch

        return True
Exemple #29
0
def do_main():
    neptune.init('ods/wheat')
    # Create experiment with defined parameters
    neptune.create_experiment(name=model_name,
                              params=PARAMS,
                              tags=[experiment_name, experiment_tag],
                              upload_source_files=[os.path.basename(__file__)])

    neptune.append_tags(f'fold_{fold}')

    device = torch.device(f'cuda:{gpu_number}') if torch.cuda.is_available(
    ) else torch.device('cpu')
    print(device)

    print(len(train_boxes_df))
    print(len(train_images_df))

    # Leave only > 0
    print('Leave only train images with boxes (validation)')
    with_boxes_filter = train_images_df[image_id_column].isin(
        train_boxes_df[image_id_column].unique())

    negative_images = enumerate_images(DIR_NEGATIVE)
    negative_images = [(negative_prefix + filename[:-4])
                       for filename in negative_images]
    negative_images.sort()
    # take first 100 now...
    negative_images = negative_images[:100]
    """
    spike_images = enumerate_images(DIR_SPIKE)
    spike_images = [(spike_dataset_prefix + filename[:-4]) for filename in spike_images]
    spike_images.sort()
    assert len(spike_images) > 0
    """

    config = get_efficientdet_config('tf_efficientdet_d5')
    net = EfficientDet(config, pretrained_backbone=False)
    load_weights(net,
                 '../timm-efficientdet-pytorch/efficientdet_d5-ef44aea8.pth')

    config.num_classes = 1
    config.image_size = our_image_size
    net.class_net = HeadNet(config,
                            num_outputs=config.num_classes,
                            norm_kwargs=dict(eps=.001, momentum=.01))

    model_train = DetBenchTrain(net, config)
    model_eval = DetBenchEval(net, config)

    manager = ModelManager(model_train, model_eval, device)

    pretrained_weights_file = 'pretrained.pth'

    images_val = train_images_df.loc[(train_images_df[fold_column] == fold)
                                     & with_boxes_filter,
                                     image_id_column].values
    images_train = train_images_df.loc[(train_images_df[fold_column] != fold),
                                       image_id_column].values

    #images_train = list(images_train) + list(negative_images) + list(spike_images)
    images_train = list(images_train) + list(negative_images)
    print(len(images_train), len(images_val))

    train_dataset = WheatDataset(images_train,
                                 DIR_TRAIN,
                                 train_boxes_df,
                                 transforms=get_train_transform(),
                                 is_test=False)
    valid_dataset = WheatDataset(images_val,
                                 DIR_TRAIN,
                                 train_boxes_df,
                                 transforms=get_valid_transform(),
                                 is_test=True)

    train_data_loader = DataLoader(train_dataset,
                                   batch_size=train_batch_size,
                                   shuffle=True,
                                   num_workers=num_workers,
                                   collate_fn=collate_fn,
                                   drop_last=True)

    valid_data_loader = DataLoader(valid_dataset,
                                   batch_size=inf_batch_size,
                                   shuffle=False,
                                   num_workers=num_workers,
                                   collate_fn=collate_fn)

    weights_file = f'{experiment_name}.pth'
    if os.path.exists(pretrained_weights_file):
        # continue training
        print('Continue training, loading weights: ' + pretrained_weights_file)
        load_weights(net, pretrained_weights_file)

    manager.run_train(train_data_loader,
                      valid_data_loader,
                      n_epoches=n_epochs,
                      weights_file=weights_file,
                      factor=factor,
                      start_lr=start_lr,
                      min_lr=min_lr,
                      lr_patience=lr_patience,
                      overall_patience=overall_patience,
                      loss_delta=loss_delta)

    # add tags
    neptune.log_text('save checkpoints as', weights_file[:-4])
    neptune.stop()
Exemple #30
0
def NeptuneLog():
    neptune.log_metric('batch_size', batch_sizes)
    neptune.log_metric('learning_rate', learning_rate)
    neptune.log_text('pre-trained', str(pretrain_check))
    neptune.log_text('model', model_name)