def draw_referenced_subgraph(g, website_url, thank_you_page_url, since,
                             min_visited_count):
    raw_graph = _build_networkx_graph(g, website_url, thank_you_page_url,
                                      since)

    persistent_nodes = [
        node for node, attr in raw_graph.nodes(data=True)
        if attr["label"] == "persistentId"
    ]
    graph_with_pos_computed = drawing.layout(
        raw_graph,
        nx.shell_layout,
        nlist=[[website_url],
               [
                   node for node, attr in raw_graph.nodes(data=True)
                   if attr["label"] == "transientId"
               ],
               [
                   node for node, attr in raw_graph.nodes(data=True)
                   if attr["label"] == "persistentId"
               ], [thank_you_page_url]])

    # update positions and change node label
    raw_graph.nodes[thank_you_page_url]["pos"] += (0, 0.75)
    for node in persistent_nodes:
        has_visited_thank_you_page = False
        visited_at_least_X_times = False
        for check_name, value in raw_graph.nodes[node]["visited_events"].items(
        ):
            if ">=" in check_name and value > 0:
                if "thank" in check_name:
                    has_visited_thank_you_page = True
                elif value > min_visited_count:
                    visited_at_least_X_times = True
        if (has_visited_thank_you_page or not visited_at_least_X_times):
            for _, to in raw_graph.edges(node):
                raw_graph.nodes[to]["opacity"] = 0.25
            raw_graph.nodes[node]["opacity"] = 0.25

    drawing.draw(
        title=
        "User devices that visited ecommerce websites and optionally converted",
        scatters=[drawing.edges_scatter(graph_with_pos_computed)] + list(
            drawing.scatters_by_label(graph_with_pos_computed,
                                      attrs_to_skip=["pos", "opacity"],
                                      sizes={
                                          "transientId": 10,
                                          "transientId-audience": 10,
                                          "persistentId": 20,
                                          "persistentId-audience": 20,
                                          "website": 30,
                                          "thankYouPage": 30,
                                      })))
Exemple #2
0
def compute_subgraph_pos(query_results, thank_you_page):
    """Given query results compute subgraph positions."""
    for persistent_id, raw_graph in _build_networkx_graph_single(
            query_results=query_results,
            thank_you_page=thank_you_page,
            max_ts_delta=300):

        raw_graph.nodes[thank_you_page]["label"] = "thank-you-page"

        graph_with_pos_computed = drawing.layout(raw_graph, _custom_layout)

        yield persistent_id, graph_with_pos_computed
def draw_referenced_subgraph(g, root_url):
    graph = _build_networkx_graph(
        root_url,
        query_results=_get_transient_ids(
            _get_persistent_ids_which_visited_website(g, root_url),
            root_url).next())
    graph = drawing.layout(graph, nx.kamada_kawai_layout)
    drawing.draw(
        title="Brand interaction",
        scatters=[drawing.edges_scatter(graph)] + list(
            drawing.scatters_by_label(graph,
                                      attrs_to_skip=["pos"],
                                      sizes={
                                          "websiteGroup": 30,
                                          "transientId": 10,
                                          "persistentId": 15,
                                          "website": 10
                                      })),
    )
Exemple #4
0
def draw_refrenced_subgraph(g, transient_id):
    raw_graph = _build_networkx_graph(
        g,
        g.V(transient_id).in_("has_identity").in_("member").next())
    graph_with_pos_computed = drawing.layout(raw_graph,
                                             nx.spring_layout,
                                             iterations=2500)

    drawing.draw(
        title="Part of single household activity on the web",
        scatters=[drawing.edges_scatter(graph_with_pos_computed)] + list(
            drawing.scatters_by_label(graph_with_pos_computed,
                                      attrs_to_skip=["pos"],
                                      sizes={
                                          "identityGroup": 30,
                                          "transientId": 15,
                                          "persistentId": 20,
                                          "websiteGroup": 15,
                                          "website": 10
                                      })),
    )
Exemple #5
0
def draw_referenced_subgraph(g,
                             website_url,
                             categories_limit=3,
                             search_time_limit_in_seconds=15):
    average_profile = _get_categories_popular_across_audience_of_website(
        g, website_url, categories_limit=categories_limit).toList()
    average_profile = dict(
        chain(*category.items()) for category in average_profile)
    similar_audience = _query_users_activities_stats(
        g,
        website_url,
        average_profile,
        search_time_limit_in_seconds=search_time_limit_in_seconds)
    similar_audience = similar_audience.limit(15).toList()

    graph = _build_graph(average_profile, similar_audience)

    iabs = [
        n for n, params in graph.nodes(data=True) if params["label"] == "IAB"
    ]
    avg_iabs = [
        n for n in iabs if graph.node[n]["category"] in average_profile
    ]

    graph_with_pos_computed = drawing.layout(
        graph,
        nx.shell_layout,
        nlist=[
            ["averageBuyer"],
            avg_iabs,
            set(iabs) - set(avg_iabs),
            [
                n for n, params in graph.nodes(data=True)
                if params["label"] == "persistentId"
            ],
            [
                n for n, params in graph.nodes(data=True)
                if params["label"] == "transientId"
            ],
        ])

    # update positions
    for name in set(iabs) - set(avg_iabs):
        node = graph_with_pos_computed.node[name]
        node["pos"] = [node["pos"][0], node["pos"][1] - 1.75]

    for name in ["averageBuyer"] + avg_iabs:
        node = graph_with_pos_computed.node[name]
        node["pos"] = [node["pos"][0], node["pos"][1] + 1.75]

    node = graph_with_pos_computed.node["averageBuyer"]
    node["pos"] = [node["pos"][0], node["pos"][1] + 1]

    drawing.draw(
        title=
        "User devices that visited ecommerce websites and optionally converted",
        scatters=list(
            drawing.edge_scatters_by_label(
                graph_with_pos_computed,
                dashes={
                    "interestedInButNotSufficient": "dash",
                    "interestedIn": "solid"
                })) + list(
                    drawing.scatters_by_label(graph_with_pos_computed,
                                              attrs_to_skip=["pos", "opacity"],
                                              sizes={
                                                  "averageBuyer": 30,
                                                  "IAB": 10,
                                                  "persistentId": 20
                                              })))