Exemple #1
0
def test_detailed_land_surface_loading_results(
        land_surface_loading_response_dicts, contexts, key, n_rows, n_nodes):

    land_surfaces = land_surface_loading_response_dicts[(n_rows, n_nodes)]
    land_surfaces_list = land_surfaces["land_surfaces"]
    df = pandas.DataFrame(land_surfaces_list)
    context = contexts[key]
    df["imp_pct"] = 100 * df["imp_area_acres"] / df["area_acres"]

    df, msg = parse_configuration_logic(
        df=df,
        config_section="api_recognize",
        config_object="land_surfaces",
        context=context,
    )

    land_surfaces_df = clean_land_surface_dataframe(df)

    wet_weather_parameters = init_wq_parameters("land_surface_emc_table",
                                                context)
    dry_weather_parameters = init_wq_parameters(
        "dry_weather_land_surface_emc_table", context)

    seasons = (context.get("project_reference_data",
                           {}).get("dry_weather_flow_table",
                                   {}).get("seasons", {}))

    t = detailed_loading_results(
        land_surfaces_df,
        wet_weather_parameters,
        dry_weather_parameters,
        seasons,
    )
    assert t["area_acres"].sum() == land_surfaces_df["area_acres"].sum()
    assert len(t) == len(land_surfaces_list)
    if not "no_joins" in key and not "no_params" in key:
        assert any(["conc" in c for c in t.columns])
        assert any(["load" in c for c in t.columns])

    t = detailed_volume_loading_results(land_surfaces_df)
    assert t["area_acres"].sum() == land_surfaces_df["area_acres"].sum()
    assert len(t) == len(land_surfaces_list)
    assert t["runoff_volume_cuft"].sum() > 0

    t = detailed_pollutant_loading_results(
        land_surfaces_df,
        wet_weather_parameters,
        dry_weather_parameters,
        seasons.keys(),
    )
    assert t["area_acres"].sum() == land_surfaces_df["area_acres"].sum()
    assert len(t) == len(land_surfaces_list)
    if not "no_joins" in key and not "no_params" in key:
        assert any(["conc" in c for c in t.columns])
        assert any(["load" in c for c in t.columns])
Exemple #2
0
def land_surface_loading(
    land_surfaces: Dict[str, Any], details: bool, context: Dict[str, Any]
) -> Dict[str, List]:
    """computes loading for volume runoff and pollutants for each land
    surface 'sliver' and aggregates values for each node. Returning results
    for the slivers is toggled by the `details` kwarg. if 'true' the resonse
    includes a 'details' key with the sliver loading. the 'summary' values
    aggregate the load to each node_id, and are always returned.
    """

    df = pandas.DataFrame(land_surfaces["land_surfaces"])
    df["imp_pct"] = 100 * df["imp_area_acres"] / df["area_acres"]

    response: Dict[str, Any] = {}
    response["errors"] = []

    df, messages = parse_configuration_logic(
        df=df,
        config_section="api_recognize",
        config_object="land_surfaces",
        context=context,
    )

    if len(messages) > 0:
        response["errors"].extend(messages)

    wet_weather_parameters = init_wq_parameters("land_surface_emc_table", context)
    dry_weather_parameters = init_wq_parameters(
        "dry_weather_land_surface_emc_table", context
    )

    seasons = (
        context.get("project_reference_data", {})
        .get("dry_weather_flow_table", {})
        .get("seasons", {})
    )

    detailed_results = detailed_loading_results(
        df, wet_weather_parameters, dry_weather_parameters, seasons,
    )
    summary_results = summary_loading_results(
        detailed_results,
        wet_weather_parameters,
        dry_weather_parameters,
        season_names=seasons.keys(),
    )

    response["summary"] = summary_results.fillna(0).to_dict(orient="records")

    if details:
        response["details"] = detailed_results.fillna(0).to_dict(orient="records")

    return response
def test_build_treatment_facility_nodes_from_long_list(
        contexts, valid_treatment_facilities, ctxt_key, has_met_data):

    context = contexts[ctxt_key]
    tmnt_facilities = pandas.DataFrame(valid_treatment_facilities)
    df, messages = parse_configuration_logic(
        df=tmnt_facilities,
        config_section="api_recognize",
        config_object="treatment_facility",
        context=context,
    )
    nodes = build_treatment_facility_nodes(df)

    for n in nodes:
        if has_met_data:
            assert n.get("rain_gauge") is not None
        else:
            assert n.get("rain_gauge") is None
def test_build_diversion_facility_months_operational(
        contexts, valid_treatment_facilities, months_operational, is_zero):

    context = contexts["default"]

    tmnt_facilities = (pandas.DataFrame(valid_treatment_facilities).query(
        "facility_type=='LowFlowFacility'").assign(
            months_operational=months_operational))

    df, messages = parse_configuration_logic(
        df=tmnt_facilities,
        config_section="api_recognize",
        config_object="treatment_facility",
        context=context,
    )
    nodes = build_treatment_facility_nodes(df)

    for n in nodes:
        if is_zero:
            assert n.get("summer_dry_weather_retention_rate_cfs") == 0.0
        else:
            assert n.get("summer_dry_weather_retention_rate_cfs") > 0.0
def test_build_treatment_facility_nodes(contexts,
                                        valid_treatment_facility_dicts,
                                        ctxt_key, has_met_data, model,
                                        checkfor):

    context = contexts[ctxt_key]
    tmnt_facilities = pandas.DataFrame([valid_treatment_facility_dicts[model]])
    df, messages = parse_configuration_logic(
        df=pandas.DataFrame(tmnt_facilities),
        config_section="api_recognize",
        config_object="treatment_facility",
        context=context,
    )
    node = build_treatment_facility_nodes(df)[0]

    check_val = node.get(checkfor)
    assert isinstance(check_val, float)

    if has_met_data:
        assert node.get("rain_gauge") is not None
    else:
        assert node.get("rain_gauge") is None