Exemple #1
0
def test_ellipsoid_contains():
    """Test Elipsoid.contains()"""
    eps = 1.e-7

    for n in range(1, NMAX + 1):
        ell = nestle.Ellipsoid(np.zeros(n), np.identity(n))  # unit n-sphere

        # point just outside unit n-sphere:
        pt = (1. / np.sqrt(n) + eps) * np.ones(n)
        assert not ell.contains(pt)

        # point just inside unit n-sphere:
        pt = (1. / np.sqrt(n) - eps) * np.ones(n)
        assert ell.contains(pt)

        # non-equal axes ellipsoid, still aligned on axes:
        a = np.diag(np.random.rand(n))
        ell = nestle.Ellipsoid(np.zeros(n), a)

        # check points on axes
        for i in range(0, n):
            axlen = 1. / np.sqrt(a[i, i])  # length of this axis
            pt = np.zeros(n)
            pt[i] = axlen + eps
            assert not ell.contains(pt)
            pt[i] = axlen - eps
            assert ell.contains(pt)
Exemple #2
0
def test_ellipsoid_sphere():
    """Test that Ellipsoid works like a sphere when ``a`` is proportional to
    the identity matrix."""

    scale = 5.
    for n in range(1, NMAX + 1):
        ctr = 2.0 * scale * np.ones(n)  # arbitrary non-zero center
        a = 1.0 / scale**2 * np.identity(n)
        ell = nestle.Ellipsoid(ctr, a)

        assert_allclose(ell.vol, nestle.vol_prefactor(n) * scale**n)
        assert_allclose(ell.axlens, scale * np.ones(n))
        assert_allclose(ell.axes, scale * np.identity(n))
Exemple #3
0
def test_ellipsoid_vol_scaling():
    """Test that scaling an ellipse works as expected."""

    scale = 1.5  # linear scale

    for n in range(1, NMAX + 1):
        # ellipsoid centered at origin with principle axes aligned with
        # coordinate axes, but random sizes.
        ctr = np.zeros(n)
        a = np.diag(np.random.rand(n))
        ell = nestle.Ellipsoid(ctr, a)

        # second ellipsoid with axes scaled.
        ell2 = nestle.Ellipsoid(ctr, 1. / scale**2 * a)

        # scale volume of first ellipse to match the second.
        ell.scale_to_vol(ell.vol * scale**n)

        # check that the ellipses are the same.
        assert_allclose(ell.vol, ell2.vol)
        assert_allclose(ell.a, ell2.a)
        assert_allclose(ell.axes, ell2.axes)
        assert_allclose(ell.axlens, ell2.axlens)
Exemple #4
0
def random_ellipsoid(n):
    """Return a random `n`-d ellipsoid centered at the origin

    This is a helper function for other tests.
    """

    # `a` in the ellipsoid must be positive definite, so we have to construct
    # a positive definite matrix. For any real, non-singular matrix A,
    # `A^T A` will be positive definite.
    det = 0.
    while abs(det) < 1.e-10:  # ensure a non-singular matrix
        A = np.random.rand(n, n)
        det = np.linalg.det(A)

    return nestle.Ellipsoid(np.zeros(n), np.dot(A.T, A))
Exemple #5
0
def test_ellipsoid_repr():
    ell = nestle.Ellipsoid([0., 0.], [[1., 0.], [0., 1.]])
    assert repr(ell) == "Ellipsoid(ctr=[0.0, 0.0])"
ax.set_aspect('equal')
fig.tight_layout()
plt.show()

###############################################################################
#
# Single ellipsoid
# ----------------
#
# Nestle correctly identifies a cloud of points as belonging to a single
# ellipsoid.

# Generate samples drawn from a single ellipsoid
npoints = 100
A = np.array([[0.25, 1., 0.5], [1., 0.25, 0.5], [0.5, 1., 0.25]])
ell_gen = nestle.Ellipsoid([0., 0., 0.], np.dot(A.T, A))
points = ell_gen.samples(npoints)
pointvol = ell_gen.vol / npoints

# Find bounding ellipsoid(s)
ells = nestle.bounding_ellipsoids(points, pointvol)

# plot
fig = plt.figure(figsize=(10., 10.))
ax = fig.add_subplot(111, projection='3d')
ax.scatter(points[:, 0], points[:, 1], points[:, 2], c='k', marker='.')
for ell in ells:
    plot_ellipsoid_3d(ell, ax)

fig.tight_layout()
plt.show()