# dataset specs X_train, y_train = load_dataset_spplited(fname=FTRAIN, test=False) print("splitted=", X_train.shape, y_train.shape) pic_width = 96 pic_height = 96 pic_channels = 1 # grayscale num_classes = 15 * 2 # other input = PicturePlaceholder( sample_input_shape=[pic_height, pic_width, pic_channels]) output = LabelsPlaceholder(num_classes=num_classes) cnn = Network() # First CNN layer cnn.add_layer(BatchNormLayer(name="batch_norm1"))\ .add_layer(ConvolutionalLayer(name="conv1", filter_size=5, num_filters=24, strides=[1, 1, 1, 1])) \ .add_layer(ActivationLayer(name="relu1", activation_fn=tf.nn.relu))\ .add_layer(MaxPoolLayer(name="pool1", padding="VALID")) # Second CNN layer cnn.add_layer(ConvolutionalLayer(name="conv2", filter_size=5, num_filters=36, strides=[1, 1, 1, 1], padding="VALID")) \ .add_layer(ActivationLayer(name="relu2", activation_fn=tf.nn.relu))\ .add_layer(MaxPoolLayer(name="pool2", padding="VALID")) # Third CNN layer cnn.add_layer(ConvolutionalLayer(name="conv3", filter_size=5, num_filters=48, strides=[1, 1, 1, 1], padding="VALID")) \ .add_layer(ActivationLayer(name="relu3", activation_fn=tf.nn.relu))\ .add_layer(MaxPoolLayer(name="pool3", padding="VALID")) # Fourth CNN layer cnn.add_layer(ConvolutionalLayer(name="conv4", filter_size=3, num_filters=64, strides=[1, 1, 1, 1], padding="VALID")) \
# dataset specs X_train, y_train = load_dataset_spplited(fname=FTRAIN, test=False) print("splitted=", X_train.shape, y_train.shape) pic_width = 96 pic_height = 96 pic_channels = 1 # grayscale num_classes = 15 * 2 # other input = PicturePlaceholder( sample_input_shape=[pic_height, pic_width, pic_channels]) output = LabelsPlaceholder(num_classes=num_classes) cnn = Network() # First CNN layer cnn.add_layer(ConvolutionalLayer(name="conv1", filter_size=5, num_filters=24))\ .add_layer(MaxPoolLayer(name="pool1"))\ .add_layer(BatchNormLayer(name="batch_norm1"))\ .add_layer(ActivationLayer(name="relu1", activation_fn=tf.nn.relu)) # Second CNN layer cnn.add_layer(ConvolutionalLayer(name="conv2", filter_size=5, num_filters=36))\ .add_layer(MaxPoolLayer(name="pool2"))\ .add_layer(BatchNormLayer(name="batch2"))\ .add_layer(ActivationLayer(name="relu2", activation_fn=tf.nn.relu)) # Third CNN layer cnn.add_layer(ConvolutionalLayer(name="conv3", filter_size=5, num_filters=48))\ .add_layer(MaxPoolLayer(name="pool3"))\ .add_layer(BatchNormLayer(name="batch3"))\ .add_layer(ActivationLayer(name="relu3", activation_fn=tf.nn.relu))