def build_FD_model(img_input): with tf.variable_scope('FD_detection'): mod = M.Model(img_input,[None,28*28]) mod.reshape([-1,28,28,1]) mod.convLayer(5,16,activation=M.PARAM_LRELU) mod.maxpoolLayer(2) mod.convLayer(5,16,activation=M.PARAM_LRELU) mod.maxpoolLayer(2) mod.convLayer(5,16,activation=M.PARAM_LRELU) mod.maxpoolLayer(2) mod.flatten() mod.fcLayer(50,activation=M.PARAM_LRELU) mod.fcLayer(11) return mod.get_current_layer()
def build_model(img_input): # can change whatever activation function with tf.variable_scope('mnist'): mod = M.Model(img_input,[None,28*28]) mod.reshape([-1,28,28,1]) mod.convLayer(5,16,activation=M.PARAM_LRELU) mod.maxpoolLayer(2) mod.convLayer(5,16,activation=M.PARAM_LRELU) mod.maxpoolLayer(2) mod.convLayer(5,16,activation=M.PARAM_LRELU) mod.maxpoolLayer(2) mod.flatten() mod.fcLayer(50,activation=M.PARAM_LRELU) mod.fcLayer(10) return mod.get_current_layer()
def __init__(self): self.model = model.Model(test_config) # 将影像采样为小图片,并进行保存,这个集合记录小图片的地址 self.sample_image_path = [] self.size = test_config.size