def loadRefineNetLazy(self, net): if isinstance(net, basestring): if os.path.exists(net): from net.scalenet import ScaleNet, ScaleNetParams comrefNetParams = ScaleNetParams(type=5, nChan=1, wIn=128, hIn=128, batchSize=1, resizeFactor=2, numJoints=1, nDims=3) self.refineNet = ScaleNet(np.random.RandomState(23455), cfgParams=comrefNetParams) self.refineNet.load(net) else: raise EnvironmentError("File not found: {}".format(net))
xend = xstart + dsize[0] ystart = int(train_data.shape[3]/2-dsize[1]/2) yend = ystart + dsize[1] test_data4 = test_data[:, :, ystart:yend, xstart:xend] print train_gt3D.max(), test_gt3D.max(), train_gt3D.min(), test_gt3D.min() print train_data.max(), test_data.max(), train_data.min(), test_data.min() imgSizeW = train_data.shape[3] imgSizeH = train_data.shape[2] nChannels = train_data.shape[1] ############################################################################# print("create network") batchSize = 64 poseNetParams = ScaleNetParams(type=1, nChan=nChannels, wIn=imgSizeW, hIn=imgSizeH, batchSize=batchSize, resizeFactor=2, numJoints=1, nDims=3) poseNet = ScaleNet(rng, cfgParams=poseNetParams) poseNetTrainerParams = ScaleNetTrainerParams() poseNetTrainerParams.use_early_stopping = False poseNetTrainerParams.batch_size = batchSize poseNetTrainerParams.learning_rate = 0.0005 poseNetTrainerParams.weightreg_factor = 0.0001 poseNetTrainerParams.force_macrobatch_reload = True poseNetTrainerParams.para_augment = True poseNetTrainerParams.augment_fun_params = {'fun': 'augment_poses', 'args': {'normZeroOne': False, 'di': di, 'aug_modes': aug_modes, 'hd': HandDetector(train_data[0, 0].copy(), abs(di.fx), abs(di.fy), importer=di)}} print("setup trainer")
nChan=1, wIn=128, hIn=128, batchSize=1, numJoints=14, nDims=3) poseNet = PoseRegNet(numpy.random.RandomState(23455), cfgParams=poseNetParams) poseNet.load("./NYU_network_prior.pkl") # comrefNetParams = ScaleNetParams(type=1, nChan=1, wIn=128, hIn=128, batchSize=1, resizeFactor=2, numJoints=1, nDims=3) # comrefNet = ScaleNet(numpy.random.RandomState(23455), cfgParams=comrefNetParams) # comrefNet.load("./net_ICVL_COM.pkl") comrefNetParams = ScaleNetParams(type=1, nChan=1, wIn=128, hIn=128, batchSize=1, resizeFactor=2, numJoints=1, nDims=3) comrefNet = ScaleNet(numpy.random.RandomState(23455), cfgParams=comrefNetParams) comrefNet.load("./net_NYU_COM.pkl") config = {'fx': 588., 'fy': 587., 'cube': (300, 300, 300)} # config = {'fx': 241.42, 'fy': 241.42, 'cube': (250, 250, 250)} # config = {'fx': 224.5, 'fy': 230.5, 'cube': (300, 300, 300)} # Creative Gesture Camera # di = ICVLImporter("./capture/") # di.fx = 224.5 # di.fy = 230.5 # di.ux = 160. # di.uy = 120. rtp = RealtimeHandposePipeline(poseNet, config, di, comrefNet)
Seq2 = di.loadSequence('test_1') testSeqs = [Seq2] # load trained network poseNetParams = ResNetParams(type=1, nChan=1, wIn=128, hIn=128, batchSize=1, numJoints=14, nDims=3) poseNetParams.loadFile = "./eval/NYU_network_prior.pkl" comrefNetParams = ScaleNetParams(type=1, nChan=1, wIn=128, hIn=128, batchSize=1, resizeFactor=2, numJoints=1, nDims=3) comrefNetParams.loadFile = "./eval/net_NYU_COM_AUGMENT.pkl" config = {'fx': 588., 'fy': 587., 'cube': (300, 300, 300)} # config = {'fx': 241.42, 'fy': 241.42, 'cube': (250, 250, 250)} # config = {'fx': 224.5, 'fy': 230.5, 'cube': (300, 300, 300)} # Creative Gesture Camera rtp = RealtimeHandposePipeline(poseNetParams, config, di, verbose=False, comrefNet=comrefNetParams) # use filenames filenames = []
di = MSRA15Importer('/content/drive/My Drive/KNOWLEDGE ENGINEERING/KE Semester 4/Core Course/CA2 (Matthew)/cvpr15_MSRAHandGestureDB/') Seq2 = di.loadSequence('P0') testSeqs = [Seq2] # di = ICVLImporter('../data/ICVL/') # Seq2 = di.loadSequence('test_seq_1') # testSeqs = [Seq2] #di = NYUImporter('../data/NYU/') #Seq2 = di.loadSequence('test_1') #testSeqs = [Seq2] # load trained network poseNetParams = ResNetParams(type=1, nChan=1, wIn=128, hIn=128, batchSize=1, numJoints=14, nDims=3) poseNetParams.loadFile = "/content/deep-prior-pp/src/eval/MSRA_network_prior_0.pkl" comrefNetParams = ScaleNetParams(type=1, nChan=1, wIn=128, hIn=128, batchSize=1, resizeFactor=2, numJoints=1, nDims=3) comrefNetParams.loadFile = "/content/deep-prior-pp/src/eval/net_MSRA15_COM_AUGMENT.pkl" config = {'fx': 588., 'fy': 587., 'cube': (300, 300, 300)} # config = {'fx': 241.42, 'fy': 241.42, 'cube': (250, 250, 250)} # config = {'fx': 224.5, 'fy': 230.5, 'cube': (300, 300, 300)} # Creative Gesture Camera rtp = RealtimeHandposePipeline(poseNetParams, config, di, verbose=False, comrefNet=comrefNetParams) # use filenames filenames = [] for i in testSeqs[0].data: filenames.append(i.fileName) dev = FileDevice(filenames, di) # use depth camera # dev = CreativeCameraDevice(mirror=True) rtp.processVideoThreaded(dev)
xend = xstart + dsize[0] ystart = int(train_data.shape[3] / 2 - dsize[1] / 2) yend = ystart + dsize[1] train_data2 = train_data[:, :, ystart:yend, xstart:xend] dsize = (int(train_data.shape[2] // 4), int(train_data.shape[3] // 4)) xstart = int(train_data.shape[2] / 2 - dsize[0] / 2) xend = xstart + dsize[0] ystart = int(train_data.shape[3] / 2 - dsize[1] / 2) yend = ystart + dsize[1] train_data4 = train_data[:, :, ystart:yend, xstart:xend] comrefNetParams = ScaleNetParams(type=1, nChan=1, wIn=96, hIn=96, batchSize=1, resizeFactor=2, numJoints=1, nDims=3) comrefNetParams.loadFile = "../../ptm/net_MSRA15_COM_AUGMENT.pkl" poseNet = ScaleNet(numpy.random.RandomState(23455), cfgParams=comrefNetParams) train_data = numpy.ndarray.astype(train_data, dtype='float64') train_data2 = numpy.ndarray.astype(train_data2, dtype='float64') train_data4 = numpy.ndarray.astype(train_data4, dtype='float64') #Seq_all list of sequence data gt3D = [] for i in xrange(len(Seq_all)): gt3D_temp = [ j.gt3Dorig[di.crop_joint_idx].reshape(1, 3) for j in Seq_all[i].data ] gt3D.extend(gt3D_temp)