Exemple #1
0
def load_cosface_model():
    model_path = 'CosFace_pytorch/cosface_model.pth'
    model = sphere().to(device)
    model.load_state_dict(torch.load(model_path, map_location=device))
    model.eval()
    return model
def main():
    # --------------------------------------model----------------------------------------
    if args.network is 'sphere20':
        model = net.sphere(type=20, is_gray=args.is_gray)
        model_eval = net.sphere(type=20, is_gray=args.is_gray)
    elif args.network is 'sphere64':
        model = net.sphere(type=64, is_gray=args.is_gray)
        model_eval = net.sphere(type=64, is_gray=args.is_gray)
    elif args.network is 'LResNet50E_IR':
        model = net.LResNet50E_IR(is_gray=args.is_gray)
        model_eval = net.LResNet50E_IR(is_gray=args.is_gray)
    else:
        raise ValueError("NOT SUPPORT NETWORK! ")

    model = torch.nn.DataParallel(model).to(device)
    model_eval = model_eval.to(device)
    print(model)
    if not os.path.exists(args.save_path):
        os.makedirs(args.save_path)
    model.module.save(args.save_path + 'CosFace_0_checkpoint.pth')

    # 512 is dimension of feature
    classifier = {
        'MCP': layer.MarginCosineProduct(512, args.num_class).to(device),
        'AL': layer.AngleLinear(512, args.num_class).to(device),
        'L': torch.nn.Linear(512, args.num_class, bias=False).to(device)
    }[args.classifier_type]

    # ------------------------------------load image---------------------------------------
    if args.is_gray:
        train_transform = transforms.Compose([
            transforms.Grayscale(),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),  # range [0, 255] -> [0.0,1.0]
            transforms.Normalize(mean=(0.5, ), std=(0.5, ))
        ])  # gray
    else:
        train_transform = transforms.Compose([
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),  # range [0, 255] -> [0.0,1.0]
            transforms.Normalize(mean=(0.5, 0.5, 0.5),
                                 std=(0.5, 0.5,
                                      0.5))  # range [0.0, 1.0] -> [-1.0,1.0]
        ])
    train_loader = torch.utils.data.DataLoader(ImageList(
        root=args.root_path,
        fileList=args.train_list,
        transform=train_transform),
                                               batch_size=args.batch_size,
                                               shuffle=True,
                                               num_workers=args.workers,
                                               pin_memory=True,
                                               drop_last=True)

    print('length of train Database: ' + str(len(train_loader.dataset)))
    print('Number of Identities: ' + str(args.num_class))

    # --------------------------------loss function and optimizer-----------------------------
    criterion = torch.nn.CrossEntropyLoss().to(device)
    optimizer = torch.optim.SGD([{
        'params': model.parameters()
    }, {
        'params': classifier.parameters()
    }],
                                lr=args.lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)

    # ----------------------------------------train----------------------------------------
    # lfw_eval.eval(args.save_path + 'CosFace_0_checkpoint.pth')
    for epoch in range(1, args.epochs + 1):
        train(train_loader, model, classifier, criterion, optimizer, epoch)
        model.module.save(args.save_path + 'CosFace_' + str(epoch) +
                          '_checkpoint.pth')
        lfw_eval.eval(
            model_eval,
            args.save_path + 'CosFace_' + str(epoch) + '_checkpoint.pth',
            args.is_gray)
    print('Finished Training')
Exemple #3
0
    return ft_dict

def make_cosine_similarity_file(target_img, all_img_path, model, model_path):
    '''
    file_dir = 'experiments'
    '''
    img_list = os.listdir(all_img_path)
    ft_dict = {}
    txt_name = '_'.join(all_img_path.split('/'))
    fo = open('experiments/{}.txt'.format(txt_name), 'w')
    foo = open('experiments/min_max_{}.txt'.format(txt_name), 'w')
    ft_dict = extract_all_img_ft(model, model_path, all_img_path, img_list)
    make_cosine_similarity_matrix(ft_dict, img_list, fo, foo)

if __name__ == '__main__':
    model = net.sphere().to('cuda')
    model_path = 'checkpoint/original.pth'
    img_path = 'lfw-112X96/Josh_Kronfeld/Josh_Kronfeld_0001.jpg'
    CASIA_dataset = '/data1/aipd_tuijian/charlesliu/dataset/CASIA-WebFace'
    lfw_dataset = '/data1/aipd_tuijian/charlesliu/dataset/lfw-112X96'
    img_dir_name_india_women = ['6432391']
    img_dir_name_men = ['6418193']
    img_dir_name_india_women_glasses = ['027.jpg', '054.jpg']
    img_dir_name_india_women_make_up = ['043.jpg', '037.jpg', '028.jpg', '016.jpg', '007.jpg']
    img_dir_name_india_women_occlusion = ['023.jpg', '017.jpg']
    img_1 = os.path.join(lfw_dataset, 'Abel_Pacheco', 'Abel_Pacheco_0001.jpg')
    img_2 = os.path.join(lfw_dataset, 'Abel_Pacheco', 'Abel_Pacheco_0004.jpg')
    f1 = extract_one_img_ft(model, model_path, img_1)
    f2 = extract_one_img_ft(model, model_path, img_2)
    distance = f1.dot(f2) / (f1.norm() * f2.norm() + 1e-5)
    print distance
Exemple #4
0
                img1 = Image.open(f).convert('RGB')
            with open(root + name2, 'rb') as f:
                img2 = Image.open(f).convert('RGB')
            f1 = extractDeepFeature(img1, model, is_gray)
            f2 = extractDeepFeature(img2, model, is_gray)

            distance = f1.dot(f2) / (f1.norm() * f2.norm() + 1e-5)
            predicts.append('{}\t{}\t{}\t{}\n'.format(name1, name2, distance,
                                                      sameflag))

    accuracy = []
    thd = []
    folds = KFold(n=6000, n_folds=10)
    thresholds = np.arange(-1.0, 1.0, 0.005)
    predicts = np.array(map(lambda line: line.strip('\n').split(), predicts))
    for idx, (train, test) in enumerate(folds):
        best_thresh = find_best_threshold(thresholds, predicts[train])
        accuracy.append(eval_acc(best_thresh, predicts[test]))
        thd.append(best_thresh)
    print('LFWACC={:.4f} std={:.4f} thd={:.4f}'.format(np.mean(accuracy),
                                                       np.std(accuracy),
                                                       np.mean(thd)))

    return np.mean(accuracy), predicts


if __name__ == '__main__':
    _, result = eval(net.sphere().to('cuda'),
                     model_path='checkpoint/CosFace_24_checkpoint.pth')
    np.savetxt("result.txt", result, '%s')
Exemple #5
0
            else:
                raise ValueError("WRONG LINE IN 'pairs.txt! ")

            with open(root + name1, 'rb') as f:
                img1 =  Image.open(f).convert('RGB')
            with open(root + name2, 'rb') as f:
                img2 =  Image.open(f).convert('RGB')
            f1 = extractDeepFeature(img1, model, is_gray)
            f2 = extractDeepFeature(img2, model, is_gray)

            distance = f1.dot(f2) / (f1.norm() * f2.norm() + 1e-5)
            predicts.append('{}\t{}\t{}\t{}\n'.format(name1, name2, distance, sameflag))

    accuracy = []
    thd = []
    folds = KFold(n=6000, n_folds=10)
    thresholds = np.arange(-1.0, 1.0, 0.005)
    predicts = np.array(map(lambda line: line.strip('\n').split(), predicts))
    for idx, (train, test) in enumerate(folds):
        best_thresh = find_best_threshold(thresholds, predicts[train])
        accuracy.append(eval_acc(best_thresh, predicts[test]))
        thd.append(best_thresh)
    print('LFWACC={:.4f} std={:.4f} thd={:.4f}'.format(np.mean(accuracy), np.std(accuracy), np.mean(thd)))

    return np.mean(accuracy), predicts


if __name__ == '__main__':
    _, result = eval(net.sphere().to('cuda'), model_path='checkpoint/CosFace_24_checkpoint.pth')
    np.savetxt("result.txt", result, '%s')